# coding: utf8 # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import import os.path as osp import random from utils import logging from .base import BaseReader from .base import get_encoding from collections import OrderedDict from .base import is_pic class Reader(BaseReader): """读取语分分割任务数据集,并对样本进行相应的处理。 Args: data_dir (str): 数据集所在的目录路径。 file_list (str): 描述数据集图片文件和对应标注文件的文件路径(文本内每行路径为相对data_dir的相对路)。 label_list (str): 描述数据集包含的类别信息文件路径。 transforms (list): 数据集中每个样本的预处理/增强算子。 num_workers (int): 数据集中样本在预处理过程中的线程或进程数。默认为4。 buffer_size (int): 数据集中样本在预处理过程中队列的缓存长度,以样本数为单位。默认为100。 parallel_method (str): 数据集中样本在预处理过程中并行处理的方式,支持'thread' 线程和'process'进程两种方式。默认为'thread'。 shuffle (bool): 是否需要对数据集中样本打乱顺序。默认为False。 """ def __init__(self, data_dir, file_list, label_list, transforms=None, num_workers=4, buffer_size=100, parallel_method='thread', shuffle=False): super(Reader, self).__init__( transforms=transforms, num_workers=num_workers, buffer_size=buffer_size, parallel_method=parallel_method, shuffle=shuffle) self.file_list = OrderedDict() self.labels = list() self._epoch = 0 with open(label_list, encoding=get_encoding(label_list)) as f: for line in f: item = line.strip() self.labels.append(item) with open(file_list, encoding=get_encoding(file_list)) as f: for line in f: items = line.strip().split() full_path_im = osp.join(data_dir, items[0]) full_path_label = osp.join(data_dir, items[1]) if not osp.exists(full_path_im): raise IOError( 'The image file {} is not exist!'.format(full_path_im)) if not osp.exists(full_path_label): raise IOError('The image file {} is not exist!'.format( full_path_label)) self.file_list[full_path_im] = full_path_label self.num_samples = len(self.file_list) logging.info("{} samples in file {}".format( len(self.file_list), file_list)) def iterator(self): self._epoch += 1 self._pos = 0 files = list(self.file_list.keys()) if self.shuffle: random.shuffle(files) files = files[:self.num_samples] self.num_samples = len(files) for f in files: label_path = self.file_list[f] sample = [f, None, label_path] yield sample