# coding: utf8 # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import paddle.fluid as fluid def nccl2_prepare(args, startup_prog, main_prog): config = fluid.DistributeTranspilerConfig() config.mode = "nccl2" t = fluid.DistributeTranspiler(config=config) envs = args.dist_env t.transpile( envs["trainer_id"], trainers=','.join(envs["trainer_endpoints"]), current_endpoint=envs["current_endpoint"], startup_program=startup_prog, program=main_prog) def pserver_prepare(args, train_prog, startup_prog): config = fluid.DistributeTranspilerConfig() config.slice_var_up = args.split_var t = fluid.DistributeTranspiler(config=config) envs = args.dist_env training_role = envs["training_role"] t.transpile( envs["trainer_id"], program=train_prog, pservers=envs["pserver_endpoints"], trainers=envs["num_trainers"], sync_mode=not args.async_mode, startup_program=startup_prog) if training_role == "PSERVER": pserver_program = t.get_pserver_program(envs["current_endpoint"]) pserver_startup_program = t.get_startup_program( envs["current_endpoint"], pserver_program, startup_program=startup_prog) return pserver_program, pserver_startup_program elif training_role == "TRAINER": train_program = t.get_trainer_program() return train_program, startup_prog else: raise ValueError( 'PADDLE_TRAINING_ROLE environment variable must be either TRAINER or PSERVER' ) def nccl2_prepare_paddle(trainer_id, startup_prog, main_prog): config = fluid.DistributeTranspilerConfig() config.mode = "nccl2" t = fluid.DistributeTranspiler(config=config) t.transpile( trainer_id, trainers=os.environ.get('PADDLE_TRAINER_ENDPOINTS'), current_endpoint=os.environ.get('PADDLE_CURRENT_ENDPOINT'), startup_program=startup_prog, program=main_prog) def prepare_for_multi_process(exe, build_strategy, train_prog): # prepare for multi-process trainer_id = int(os.environ.get('PADDLE_TRAINER_ID', 0)) num_trainers = int(os.environ.get('PADDLE_TRAINERS_NUM', 1)) if num_trainers < 2: return build_strategy.num_trainers = num_trainers build_strategy.trainer_id = trainer_id # NOTE(zcd): use multi processes to train the model, # and each process use one GPU card. startup_prog = fluid.Program() nccl2_prepare_paddle(trainer_id, startup_prog, train_prog) # the startup_prog are run two times, but it doesn't matter. exe.run(startup_prog)