from datasets import Dataset import transforms import paddle.fluid as fluid from models import UNet data_dir = '/ssd1/chenguowei01/dataset/optic_disc_seg' train_list = '/ssd1/chenguowei01/dataset/optic_disc_seg/train_list.txt' val_list = '/ssd1/chenguowei01/dataset/optic_disc_seg/val_list.txt' img_file = data_dir + '/JPEGImages/H0005.jpg' train_transforms = transforms.Compose([ transforms.Resize((192, 192)), transforms.RandomHorizontalFlip(), transforms.Normalize() ]) train_dataset = Dataset( data_dir=data_dir, file_list=train_list, transforms=train_transforms, num_workers='auto', buffer_size=100, parallel_method='thread', shuffle=True) eval_transforms = transforms.Compose( [transforms.Resize((192, 192)), transforms.Normalize()]) eval_dataset = Dataset( data_dir=data_dir, file_list=val_list, transforms=eval_transforms, num_workers='auto', buffer_size=100, parallel_method='thread', shuffle=True) model = UNet(num_classes=2) with fluid.dygraph.guard(model.places): model.build_model() #model.load_model('output/epoch_10/') model.train( num_epochs=10, train_dataset=train_dataset, eval_dataset=eval_dataset) model.evaluate(eval_dataset) model.predict(img_file, eval_transforms)