# dice loss解决二分类中样本不均衡问题 对于二类图像分割任务中,往往存在类别分布不均的情况,如:瑕疵检测,道路提取及病变区域提取等等。 在DeepGlobe比赛的Road Extraction中,训练数据道路占比为:%4.5。如下为其图片样例:


可以看出道路在整张图片中的比例很小。 ## 数据集下载 我们从DeepGlobe比赛的Road Extraction的训练集中随机抽取了800张图片作为训练集,200张图片作为验证集, 制作了一个小型的道路提取数据集[MiniDeepGlobeRoadExtraction](https://paddleseg.bj.bcebos.com/dataset/MiniDeepGlobeRoadExtraction.zip) ## softmax loss与dice loss 在图像分割中,softmax loss(sotfmax with cross entroy loss)同等的对待每一像素,因此当背景占据绝大部分的情况下, 网络将偏向于背景的学习,使网络对目标的提取能力变差。`dice loss(dice coefficient loss)`通过计算预测与标注之间的重叠部分计算损失函数,避免了类别不均衡带来的影响,能够取得更好的效果。 在实际应用中`dice loss`往往与`bce loss(binary cross entroy loss)`结合使用,提高模型训练的稳定性。 dice loss的定义如下: ![equation](http://latex.codecogs.com/gif.latex?dice\\_loss=1-\frac{2|Y\bigcap{P}|}{|Y|+|P|}) 其中 ![equation](http://latex.codecogs.com/gif.latex?|Y\bigcap{P}|) 表示*Y*和*P*的共有元素数, 实际计算通过求两者的乘积之和进行计算。如下所示:


[dice系数详解](https://zh.wikipedia.org/wiki/Dice%E7%B3%BB%E6%95%B0) ## PaddleSeg指定训练loss PaddleSeg通过`cfg.SOLVER.LOSS`参数可以选择训练时的损失函数, 如`cfg.SOLVER.LOSS=['dice_loss','bce_loss']`将指定训练loss为`dice loss`与`bce loss`的组合 ## 实验比较 在MiniDeepGlobeRoadExtraction数据集进行了实验比较。 * 数据集下载 ```shell python dataset/download_mini_deepglobe_road_extraction.py ``` * 预训练模型下载 ```shell python pretrained_model/download_model.py deeplabv3p_mobilenetv2-1-0_bn_coco ``` * 配置/数据校验 ```shell python pdseg/check.py --cfg ./configs/deepglobe_road_extraction.yaml ``` * 训练 ```shell python pdseg/train.py --cfg ./configs/deepglobe_road_extraction.yaml --use_gpu SOLVER.LOSS "['dice_loss','bce_loss']" ``` * 评估 ``` python pdseg/eval.py --cfg ./configs/deepglobe_road_extraction.yaml --use_gpu SOLVER.LOSS "['dice_loss','bce_loss']" ``` * 结果比较 softmax loss和dice loss + bce loss实验结果如下图所示。 图中橙色曲线为dice loss + bce loss,最高mIoU为76.02%,蓝色曲线为softmax loss, 最高mIoU为73.62%。