# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import paddle.fluid as fluid from paddle.fluid.dygraph.parallel import ParallelEnv from paddle.fluid.io import DataLoader from paddle.incubate.hapi.distributed import DistributedBatchSampler import dygraph.utils.logger as logger from dygraph.utils import load_pretrained_model from dygraph.utils import resume from dygraph.utils import Timer, calculate_eta from .val import evaluate def train(model, train_dataset, places=None, eval_dataset=None, optimizer=None, save_dir='output', iters=10000, batch_size=2, resume_model=None, save_interval_iters=1000, log_iters=10, num_classes=None, num_workers=8, use_vdl=False): ignore_index = model.ignore_index nranks = ParallelEnv().nranks start_iter = 0 if resume_model is not None: start_iter = resume(model, optimizer, resume_model) if not os.path.isdir(save_dir): if os.path.exists(save_dir): os.remove(save_dir) os.makedirs(save_dir) if nranks > 1: strategy = fluid.dygraph.prepare_context() ddp_model = fluid.dygraph.DataParallel(model, strategy) batch_sampler = DistributedBatchSampler( train_dataset, batch_size=batch_size, shuffle=True, drop_last=True) loader = DataLoader( train_dataset, batch_sampler=batch_sampler, places=places, num_workers=num_workers, return_list=True, ) if use_vdl: from visualdl import LogWriter log_writer = LogWriter(save_dir) timer = Timer() avg_loss = 0.0 iters_per_epoch = len(batch_sampler) best_mean_iou = -1.0 best_model_iter = -1 train_reader_cost = 0.0 train_batch_cost = 0.0 timer.start() iter = 0 while iter < iters: for data in loader: iter += 1 if iter > iters: break train_reader_cost += timer.elapsed_time() images = data[0] labels = data[1].astype('int64') if nranks > 1: loss = ddp_model(images, labels) # apply_collective_grads sum grads over multiple gpus. loss = ddp_model.scale_loss(loss) loss.backward() ddp_model.apply_collective_grads() else: loss = model(images, labels) loss.backward() optimizer.minimize(loss) model.clear_gradients() avg_loss += loss.numpy()[0] lr = optimizer.current_step_lr() train_batch_cost += timer.elapsed_time() if (iter) % log_iters == 0 and ParallelEnv().local_rank == 0: avg_loss /= log_iters avg_train_reader_cost = train_reader_cost / log_iters avg_train_batch_cost = train_batch_cost / log_iters train_reader_cost = 0.0 train_batch_cost = 0.0 remain_iters = iters - iter eta = calculate_eta(remain_iters, avg_train_batch_cost) logger.info( "[TRAIN] epoch={}, iter={}/{}, loss={:.4f}, lr={:.6f}, batch_cost={:.4f}, reader_cost={:.4f} | ETA {}" .format((iter - 1) // iters_per_epoch + 1, iter, iters, avg_loss * nranks, lr, avg_train_batch_cost, avg_train_reader_cost, eta)) if use_vdl: log_writer.add_scalar('Train/loss', avg_loss * nranks, iter) log_writer.add_scalar('Train/lr', lr, iter) log_writer.add_scalar('Train/batch_cost', avg_train_batch_cost, iter) log_writer.add_scalar('Train/reader_cost', avg_train_reader_cost, iter) avg_loss = 0.0 if (iter % save_interval_iters == 0 or iter == iters) and ParallelEnv().local_rank == 0: current_save_dir = os.path.join(save_dir, "iter_{}".format(iter)) if not os.path.isdir(current_save_dir): os.makedirs(current_save_dir) fluid.save_dygraph(model.state_dict(), os.path.join(current_save_dir, 'model')) fluid.save_dygraph(optimizer.state_dict(), os.path.join(current_save_dir, 'model')) if eval_dataset is not None: mean_iou, avg_acc = evaluate( model, eval_dataset, model_dir=current_save_dir, num_classes=num_classes, ignore_index=ignore_index, iter_id=iter) if mean_iou > best_mean_iou: best_mean_iou = mean_iou best_model_iter = iter best_model_dir = os.path.join(save_dir, "best_model") fluid.save_dygraph( model.state_dict(), os.path.join(best_model_dir, 'model')) logger.info( 'Current evaluated best model in eval_dataset is iter_{}, miou={:4f}' .format(best_model_iter, best_mean_iou)) if use_vdl: log_writer.add_scalar('Evaluate/mIoU', mean_iou, iter) log_writer.add_scalar('Evaluate/aAcc', avg_acc, iter) model.train() timer.restart() if use_vdl: log_writer.close()