# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np import tqdm import cv2 from paddle.fluid.dygraph.base import to_variable import paddle.fluid as fluid import dygraph.utils.logger as logger from dygraph.utils import ConfusionMatrix from dygraph.utils import Timer, calculate_eta def evaluate(model, eval_dataset=None, model_dir=None, num_classes=None, ignore_index=255, epoch_id=None): ckpt_path = os.path.join(model_dir, 'model') para_state_dict, opti_state_dict = fluid.load_dygraph(ckpt_path) model.set_dict(para_state_dict) model.eval() total_steps = len(eval_dataset) conf_mat = ConfusionMatrix(num_classes, streaming=True) logger.info( "Start to evaluating(total_samples={}, total_steps={})...".format( len(eval_dataset), total_steps)) timer = Timer() timer.start() for step, (im, im_info, label) in tqdm.tqdm( enumerate(eval_dataset), total=total_steps): im = to_variable(im) pred, _ = model(im) pred = pred.numpy().astype('float32') pred = np.squeeze(pred) for info in im_info[::-1]: if info[0] == 'resize': h, w = info[1][0], info[1][1] pred = cv2.resize(pred, (w, h), cv2.INTER_NEAREST) elif info[0] == 'padding': h, w = info[1][0], info[1][1] pred = pred[0:h, 0:w] else: raise Exception("Unexpected info '{}' in im_info".format( info[0])) pred = pred[np.newaxis, :, :, np.newaxis] pred = pred.astype('int64') mask = label != ignore_index conf_mat.calculate(pred=pred, label=label, ignore=mask) _, iou = conf_mat.mean_iou() time_step = timer.elapsed_time() remain_step = total_steps - step - 1 logger.debug( "[EVAL] Epoch={}, Step={}/{}, iou={:4f}, sec/step={:.4f} | ETA {}". format(epoch_id, step + 1, total_steps, iou, time_step, calculate_eta(remain_step, time_step))) timer.restart() category_iou, miou = conf_mat.mean_iou() category_acc, macc = conf_mat.accuracy() logger.info("[EVAL] #Images={} mAcc={:.4f} mIoU={:.4f}".format( len(eval_dataset), macc, miou)) logger.info("[EVAL] Category IoU: " + str(category_iou)) logger.info("[EVAL] Category Acc: " + str(category_acc)) logger.info("[EVAL] Kappa:{:.4f} ".format(conf_mat.kappa())) return miou, macc