#pragma once #include #include #include #include #include #include #ifdef _WIN32 #include #else #include #include #endif namespace PaddleSolution { namespace utils { inline std::string path_join(const std::string& dir, const std::string& path) { std::string seperator = "/"; #ifdef _WIN32 seperator = "\\"; #endif return dir + seperator + path; } #ifndef _WIN32 // scan a directory and get all files with input extensions inline std::vector get_directory_images(const std::string& path, const std::string& exts) { std::vector imgs; struct dirent *entry; DIR *dir = opendir(path.c_str()); if (dir == NULL) { closedir(dir); return imgs; } while ((entry = readdir(dir)) != NULL) { std::string item = entry->d_name; auto ext = strrchr(entry->d_name, '.'); if (!ext || std::string(ext) == "." || std::string(ext) == "..") { continue; } if (exts.find(ext) != std::string::npos) { imgs.push_back(path_join(path, entry->d_name)); } } return imgs; } #else // scan a directory and get all files with input extensions inline std::vector get_directory_images(const std::string& path, const std::string& exts) { std::vector imgs; for (const auto& item : std::experimental::filesystem::directory_iterator(path)) { auto suffix = item.path().extension().string(); if (exts.find(suffix) != std::string::npos && suffix.size() > 0) { auto fullname = path_join(path, item.path().filename().string()); imgs.push_back(item.path().string()); } } return imgs; } #endif // normalize and HWC_BGR -> CHW_RGB inline void normalize(cv::Mat& im, float* data, std::vector& fmean, std::vector& fstd) { int rh = im.rows; int rw = im.cols; int rc = im.channels(); double normf = (double)1.0 / 255.0; #pragma omp parallel for for (int h = 0; h < rh; ++h) { const uchar* ptr = im.ptr(h); int im_index = 0; for (int w = 0; w < rw; ++w) { for (int c = 0; c < rc; ++c) { int top_index = (c * rh + h) * rw + w; float pixel = static_cast(ptr[im_index++]); pixel = (pixel * normf - fmean[c]) / fstd[c]; data[top_index] = pixel; } } } } // argmax inline void argmax(float* out, std::vector& shape, std::vector& mask, std::vector& scoremap) { int out_img_len = shape[1] * shape[2]; int blob_out_len = out_img_len * shape[0]; /* Eigen::TensorMap> out_3d(out, shape[0], shape[1], shape[2]); Eigen::Tensor argmax = out_3d.argmax(0); */ float max_value = -1; int label = 0; #pragma omp parallel private(label) for (int i = 0; i < out_img_len; ++i) { max_value = -1; label = 0; #pragma omp for reduction(max : max_value) for (int j = 0; j < shape[0]; ++j) { int index = i + j * out_img_len; if (index >= blob_out_len) { continue; } float value = out[index]; if (value > max_value) { max_value = value; label = j; } } if (label == 0) max_value = 0; mask[i] = uchar(label); scoremap[i] = uchar(max_value * 255); } } } }