# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from collections import OrderedDict import paddle.fluid as fluid from paddle.fluid.dygraph import Conv2D, BatchNorm, Pool2D import contextlib regularizer = fluid.regularizer.L2DecayRegularizer(regularization_coeff=0.0) name_scope = "" @contextlib.contextmanager def scope(name): global name_scope bk = name_scope name_scope = name_scope + name + '/' yield name_scope = bk class UNet(fluid.dygraph.Layer): def __init__(self, num_classes, upsample_mode='bilinear', ignore_index=255): super().__init__() self.encode = Encoder() self.decode = Decode(upsample_mode=upsample_mode) self.get_logit = GetLogit(64, num_classes) self.ignore_index = ignore_index def forward(self, x, label, mode='train'): encode_data, short_cuts = self.encode(x) decode_data = self.decode(encode_data, short_cuts) logit = self.get_logit(decode_data) if mode == 'train': return self._get_loss(logit, label) else: logit = fluid.layers.softmax(logit, axis=1) logit = fluid.layers.transpose(logit, [0, 2, 3, 1]) pred = fluid.layers.argmax(logit, axis=3) pred = fluid.layers.unsqueeze(pred, axes=[3]) return pred, logit def _get_loss(self, logit, label): mask = label != self.ignore_index mask = fluid.layers.cast(mask, 'float32') loss, probs = fluid.layers.softmax_with_cross_entropy( logit, label, ignore_index=self.ignore_index, return_softmax=True, axis=1) loss = loss * mask avg_loss = fluid.layers.mean(loss) / (fluid.layers.mean(mask) + 0.00001) label.stop_gradient = True mask.stop_gradient = True return avg_loss class Encoder(fluid.dygraph.Layer): def __init__(self): super().__init__() with scope('encode'): with scope('block1'): self.double_conv = DoubleConv(3, 64) with scope('block1'): self.down1 = Down(64, 128) with scope('block2'): self.down2 = Down(128, 256) with scope('block3'): self.down3 = Down(256, 512) with scope('block4'): self.down4 = Down(512, 512) def forward(self, x): short_cuts = [] x = self.double_conv(x) short_cuts.append(x) x = self.down1(x) short_cuts.append(x) x = self.down2(x) short_cuts.append(x) x = self.down3(x) short_cuts.append(x) x = self.down4(x) return x, short_cuts class Decode(fluid.dygraph.Layer): def __init__(self, upsample_mode='bilinear'): super().__init__() with scope('decode'): with scope('decode1'): self.up1 = Up(512, 256, upsample_mode) with scope('decode2'): self.up2 = Up(256, 128, upsample_mode) with scope('decode3'): self.up3 = Up(128, 64, upsample_mode) with scope('decode4'): self.up4 = Up(64, 64, upsample_mode) def forward(self, x, short_cuts): x = self.up1(x, short_cuts[3]) x = self.up2(x, short_cuts[2]) x = self.up3(x, short_cuts[1]) x = self.up4(x, short_cuts[0]) return x class GetLogit(fluid.dygraph.Layer): def __init__(self): super().__init__() class DoubleConv(fluid.dygraph.Layer): def __init__(self, num_channels, num_filters): super().__init__() with scope('conv0'): param_attr = fluid.ParamAttr( name=name_scope + 'weights', regularizer=regularizer, initializer=fluid.initializer.TruncatedNormal( loc=0.0, scale=0.33)) self.conv0 = Conv2D( num_channels=num_channels, num_filters=num_filters, filter_size=3, stride=1, padding=1, param_attr=param_attr) self.bn0 = BatchNorm( num_channels=num_filters, param_attr=fluid.ParamAttr( name=name_scope + 'gamma', regularizer=regularizer), bias_attr=fluid.ParamAttr( name=name_scope + 'beta', regularizer=regularizer), moving_mean_name=name_scope + 'moving_mean', moving_variance_name=name_scope + 'moving_variance') with scope('conv1'): param_attr = fluid.ParamAttr( name=name_scope + 'weights', regularizer=regularizer, initializer=fluid.initializer.TruncatedNormal( loc=0.0, scale=0.33)) self.conv1 = Conv2D( num_channels=num_filters, num_filters=num_filters, filter_size=3, stride=1, padding=1, param_attr=param_attr) self.bn1 = BatchNorm( num_channels=num_filters, param_attr=fluid.ParamAttr( name=name_scope + 'gamma', regularizer=regularizer), bias_attr=fluid.ParamAttr( name=name_scope + 'beta', regularizer=regularizer), moving_mean_name=name_scope + 'moving_mean', moving_variance_name=name_scope + 'moving_variance') def forward(self, x): x = self.conv0(x) x = self.bn0(x) x = fluid.layers.relu(x) x = self.conv1(x) x = self.bn1(x) x = fluid.layers.relu(x) return x class Down(fluid.dygraph.Layer): def __init__(self, num_channels, num_filters): super().__init__() with scope("down"): self.max_pool = Pool2D( pool_size=2, pool_type='max', pool_stride=2, pool_padding=0) self.double_conv = DoubleConv(num_channels, num_filters) def forward(self, x): x = self.max_pool(x) x = self.double_conv(x) return x class Up(fluid.dygraph.Layer): def __init__(self, num_channels, num_filters, upsample_mode): super().__init__() self.upsample_mode = upsample_mode with scope('up'): if upsample_mode == 'bilinear': self.double_conv = DoubleConv(2 * num_channels, num_filters) if not upsample_mode == 'bilinear': param_attr = fluid.ParamAttr( name=name_scope + 'weights', regularizer=regularizer, initializer=fluid.initializer.XavierInitializer(), ) self.deconv = fluid.dygraph.Conv2DTranspose( num_channels=num_channels, num_filters=num_filters // 2, filter_size=2, stride=2, padding=0, param_attr=param_attr) self.double_conv = DoubleConv(num_channels + num_filters // 2, num_filters) def forward(self, x, short_cut): if self.upsample_mode == 'bilinear': short_cut_shape = fluid.layers.shape(short_cut) x = fluid.layers.resize_bilinear(x, short_cut_shape[2:]) else: x = self.deconv(x) x = fluid.layers.concat([x, short_cut], axis=1) x = self.double_conv(x) return x class GetLogit(fluid.dygraph.Layer): def __init__(self, num_channels, num_classes): super().__init__() with scope('logit'): param_attr = fluid.ParamAttr( name=name_scope + 'weights', regularizer=regularizer, initializer=fluid.initializer.TruncatedNormal( loc=0.0, scale=0.01)) self.conv = Conv2D( num_channels=num_channels, num_filters=num_classes, filter_size=3, stride=1, padding=1, param_attr=param_attr) def forward(self, x): x = self.conv(x) return x