# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle.fluid as fluid from paddle.fluid.dygraph import Conv2D, Pool2D try: from paddle.fluid.dygraph import SyncBatchNorm as BatchNorm except: from paddle.fluid.dygraph import BatchNorm class UNet(fluid.dygraph.Layer): def __init__(self, num_classes, ignore_index=255): super().__init__() self.encode = UnetEncoder() self.decode = UnetDecode() self.get_logit = GetLogit(64, num_classes) self.ignore_index = ignore_index self.EPS = 1e-5 def forward(self, x, label=None, mode='train'): encode_data, short_cuts = self.encode(x) decode_data = self.decode(encode_data, short_cuts) logit = self.get_logit(decode_data) if mode == 'train': return self._get_loss(logit, label) else: score_map = fluid.layers.softmax(logit, axis=1) score_map = fluid.layers.transpose(score_map, [0, 2, 3, 1]) pred = fluid.layers.argmax(score_map, axis=3) pred = fluid.layers.unsqueeze(pred, axes=[3]) return pred, score_map def _get_loss(self, logit, label): logit = fluid.layers.transpose(logit, [0, 2, 3, 1]) label = fluid.layers.transpose(label, [0, 2, 3, 1]) mask = label != self.ignore_index mask = fluid.layers.cast(mask, 'float32') loss, probs = fluid.layers.softmax_with_cross_entropy( logit, label, ignore_index=self.ignore_index, return_softmax=True, axis=1) loss = loss * mask avg_loss = fluid.layers.mean(loss) / ( fluid.layers.mean(mask) + self.EPS) label.stop_gradient = True mask.stop_gradient = True return avg_loss class UnetEncoder(fluid.dygraph.Layer): def __init__(self): super().__init__() self.double_conv = DoubleConv(3, 64) self.down1 = Down(64, 128) self.down2 = Down(128, 256) self.down3 = Down(256, 512) self.down4 = Down(512, 512) def forward(self, x): short_cuts = [] x = self.double_conv(x) short_cuts.append(x) x = self.down1(x) short_cuts.append(x) x = self.down2(x) short_cuts.append(x) x = self.down3(x) short_cuts.append(x) x = self.down4(x) return x, short_cuts class UnetDecode(fluid.dygraph.Layer): def __init__(self): super().__init__() self.up1 = Up(512, 256) self.up2 = Up(256, 128) self.up3 = Up(128, 64) self.up4 = Up(64, 64) def forward(self, x, short_cuts): x = self.up1(x, short_cuts[3]) x = self.up2(x, short_cuts[2]) x = self.up3(x, short_cuts[1]) x = self.up4(x, short_cuts[0]) return x class DoubleConv(fluid.dygraph.Layer): def __init__(self, num_channels, num_filters): super().__init__() self.conv0 = Conv2D( num_channels=num_channels, num_filters=num_filters, filter_size=3, stride=1, padding=1) self.bn0 = BatchNorm(num_channels=num_filters) self.conv1 = Conv2D( num_channels=num_filters, num_filters=num_filters, filter_size=3, stride=1, padding=1) self.bn1 = BatchNorm(num_channels=num_filters) def forward(self, x): x = self.conv0(x) x = self.bn0(x) x = fluid.layers.relu(x) x = self.conv1(x) x = self.bn1(x) x = fluid.layers.relu(x) return x class Down(fluid.dygraph.Layer): def __init__(self, num_channels, num_filters): super().__init__() self.max_pool = Pool2D( pool_size=2, pool_type='max', pool_stride=2, pool_padding=0) self.double_conv = DoubleConv(num_channels, num_filters) def forward(self, x): x = self.max_pool(x) x = self.double_conv(x) return x class Up(fluid.dygraph.Layer): def __init__(self, num_channels, num_filters): super().__init__() self.double_conv = DoubleConv(2 * num_channels, num_filters) def forward(self, x, short_cut): short_cut_shape = fluid.layers.shape(short_cut) x = fluid.layers.resize_bilinear(x, short_cut_shape[2:]) x = fluid.layers.concat([x, short_cut], axis=1) x = self.double_conv(x) return x class GetLogit(fluid.dygraph.Layer): def __init__(self, num_channels, num_classes): super().__init__() self.conv = Conv2D( num_channels=num_channels, num_filters=num_classes, filter_size=3, stride=1, padding=1) def forward(self, x): x = self.conv(x) return x