# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from paddle.fluid.dygraph.base import to_variable import numpy as np import paddle.fluid as fluid from paddle.fluid.dygraph.parallel import ParallelEnv import cv2 import tqdm from datasets import OpticDiscSeg, Cityscapes import transforms as T from models import MODELS import utils import utils.logging as logging from utils import get_environ_info def parse_args(): parser = argparse.ArgumentParser(description='Model training') # params of model parser.add_argument( '--model_name', dest='model_name', help='Model type for testing, which is one of {}'.format( str(list(MODELS.keys()))), type=str, default='UNet') # params of dataset parser.add_argument( '--dataset', dest='dataset', help= "The dataset you want to train, which is one of ('OpticDiscSeg', 'Cityscapes')", type=str, default='OpticDiscSeg') # params of prediction parser.add_argument( "--input_size", dest="input_size", help="The image size for net inputs.", nargs=2, default=[512, 512], type=int) parser.add_argument( '--batch_size', dest='batch_size', help='Mini batch size', type=int, default=2) parser.add_argument( '--model_dir', dest='model_dir', help='The path of model for evaluation', type=str, default=None) parser.add_argument( '--save_dir', dest='save_dir', help='The directory for saving the inference results', type=str, default='./output/result') return parser.parse_args() def mkdir(path): sub_dir = os.path.dirname(path) if not os.path.exists(sub_dir): os.makedirs(sub_dir) def infer(model, test_dataset=None, model_dir=None, save_dir='output'): ckpt_path = os.path.join(model_dir, 'model') para_state_dict, opti_state_dict = fluid.load_dygraph(ckpt_path) model.set_dict(para_state_dict) model.eval() added_saved_dir = os.path.join(save_dir, 'added') pred_saved_dir = os.path.join(save_dir, 'prediction') logging.info("Start to predict...") for im, im_info, im_path in tqdm.tqdm(test_dataset): im = to_variable(im) pred, _ = model(im, mode='test') pred = pred.numpy() pred = np.squeeze(pred).astype('uint8') for info in im_info[::-1]: if info[0] == 'resize': h, w = info[1][0], info[1][1] pred = cv2.resize(pred, (w, h), cv2.INTER_NEAREST) elif info[0] == 'padding': h, w = info[1][0], info[1][1] pred = pred[0:h, 0:w] else: raise Exception("Unexpected info '{}' in im_info".format( info[0])) im_file = im_path.replace(test_dataset.data_dir, '') if im_file[0] == '/': im_file = im_file[1:] # save added image added_image = utils.visualize(im_path, pred, weight=0.6) added_image_path = os.path.join(added_saved_dir, im_file) mkdir(added_image_path) cv2.imwrite(added_image_path, added_image) # save prediction pred_im = utils.visualize(im_path, pred, weight=0.0) pred_saved_path = os.path.join(pred_saved_dir, im_file) mkdir(pred_saved_path) cv2.imwrite(pred_saved_path, pred_im) def main(args): env_info = get_environ_info() places = fluid.CUDAPlace(ParallelEnv().dev_id) \ if env_info['place'] == 'cuda' and fluid.is_compiled_with_cuda() \ else fluid.CPUPlace() if args.dataset.lower() == 'opticdiscseg': dataset = OpticDiscSeg elif args.dataset.lower() == 'cityscapes': dataset = Cityscapes else: raise Exception( "The --dataset set wrong. It should be one of ('OpticDiscSeg', 'Cityscapes')" ) with fluid.dygraph.guard(places): test_transforms = T.Compose([T.Resize(args.input_size), T.Normalize()]) test_dataset = dataset(transforms=test_transforms, mode='test') if args.model_name not in MODELS: raise Exception( '--model_name is invalid. it should be one of {}'.format( str(list(MODELS.keys())))) model = MODELS[args.model_name](num_classes=test_dataset.num_classes) infer( model, model_dir=args.model_dir, test_dataset=test_dataset, save_dir=args.save_dir) if __name__ == '__main__': args = parse_args() main(args)