# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import paddle.fluid as fluid import numpy as np from PIL import Image class Dataset(fluid.io.Dataset): def __init__(self, data_dir, num_classes, train_list=None, val_list=None, test_list=None, separator=' ', transforms=None, mode='train'): self.data_dir = data_dir self.transforms = transforms self.file_list = list() self.mode = mode self.num_classes = num_classes if mode.lower() not in ['train', 'eval', 'test']: raise Exception( "mode should be 'train', 'eval' or 'test', but got {}.".format( mode)) if self.transforms is None: raise Exception("transform is necessary, but it is None.") self.data_dir = data_dir if mode == 'train': if train_list is None: raise Exception( 'When mode is "train", train_list is need, but it is None.') elif not os.path.exists(train_list): raise Exception( 'train_list is not found: {}'.format(train_list)) else: file_list = train_list elif mode == 'eval': if val_list is None: raise Exception( 'When mode is "eval", val_list is need, but it is None.') elif not os.path.exists(val_list): raise Exception('val_list is not found: {}'.format(val_list)) else: file_list = val_list else: if test_list is None: raise Exception( 'When mode is "test", test_list is need, but it is None.') elif not os.path.exists(test_list): raise Exception('test_list is not found: {}'.format(test_list)) else: file_list = test_list with open(file_list, 'r') as f: for line in f: items = line.strip().split(separator) if len(items) != 2: if mode == 'train' or mode == 'eval': raise Exception( "File list format incorrect! It should be" " image_name{}label_name\\n".format(separator)) image_path = os.path.join(self.data_dir, items[0]) grt_path = None else: image_path = os.path.join(self.data_dir, items[0]) grt_path = os.path.join(self.data_dir, items[1]) self.file_list.append([image_path, grt_path]) def __getitem__(self, idx): image_path, grt_path = self.file_list[idx] if self.mode == 'train': im, im_info, label = self.transforms(im=image_path, label=grt_path) return im, label elif self.mode == 'eval': im, im_info, _ = self.transforms(im=image_path) im = im[np.newaxis, ...] label = np.asarray(Image.open(grt_path)) label = label[np.newaxis, np.newaxis, :, :] return im, im_info, label if self.mode == 'test': im, im_info, _ = self.transforms(im=image_path) im = im[np.newaxis, ...] return im, im_info, image_path def __len__(self): return len(self.file_list)