EVAL_CROP_SIZE: (2049, 1025) # (width, height), for unpadding rangescaling and stepscaling TRAIN_CROP_SIZE: (769, 769) # (width, height), for unpadding rangescaling and stepscaling AUG: AUG_METHOD: "stepscaling" # choice unpadding rangescaling and stepscaling MAX_SCALE_FACTOR: 2.0 # for stepscaling MIN_SCALE_FACTOR: 0.5 # for stepscaling SCALE_STEP_SIZE: 0.25 # for stepscaling MIRROR: True BATCH_SIZE: 32 DATASET: DATA_DIR: "./dataset/cityscapes/" IMAGE_TYPE: "rgb" # choice rgb or rgba NUM_CLASSES: 19 TEST_FILE_LIST: "dataset/cityscapes/val.list" TRAIN_FILE_LIST: "dataset/cityscapes/train.list" VAL_FILE_LIST: "dataset/cityscapes/val.list" IGNORE_INDEX: 255 SEPARATOR: " " FREEZE: MODEL_FILENAME: "model" PARAMS_FILENAME: "params" MODEL: DEFAULT_NORM_TYPE: "bn" MODEL_NAME: "deeplabv3p" DEEPLAB: BACKBONE: "mobilenetv3_large" ASPP_WITH_SEP_CONV: True DECODER_USE_SEP_CONV: True ENCODER_WITH_ASPP: True ENABLE_DECODER: True OUTPUT_STRIDE: 32 BACKBONE_LR_MULT_LIST: [0.15,0.35,0.65,0.85,1] ENCODER: POOLING_STRIDE: (4, 5) POOLING_CROP_SIZE: (769, 769) ASPP_WITH_SE: True SE_USE_QSIGMOID: True ASPP_CONVS_FILTERS: 128 ASPP_WITH_CONCAT_PROJECTION: False ADD_IMAGE_LEVEL_FEATURE: False DECODER: USE_SUM_MERGE: True CONV_FILTERS: 19 OUTPUT_IS_LOGITS: True TRAIN: PRETRAINED_MODEL_DIR: u"pretrained_model/mobilenetv3-1-0_large_bn_imagenet" MODEL_SAVE_DIR: "saved_model/deeplabv3p_mobilenetv3_large_cityscapes" SNAPSHOT_EPOCH: 1 SYNC_BATCH_NORM: True TEST: TEST_MODEL: "saved_model/deeplabv3p_mobilenetv3_large_cityscapes/final" SOLVER: LR: 0.2 LR_POLICY: "poly" OPTIMIZER: "sgd" NUM_EPOCHS: 850