TRAIN_CROP_SIZE: (512, 512) # (width, height), for unpadding rangescaling and stepscaling EVAL_CROP_SIZE: (512, 512) # (width, height), for unpadding rangescaling and stepscaling AUG: AUG_METHOD: "unpadding" # choice unpadding rangescaling and stepscaling FIX_RESIZE_SIZE: (512, 512) # (width, height), for unpadding INF_RESIZE_VALUE: 500 # for rangescaling MAX_RESIZE_VALUE: 600 # for rangescaling MIN_RESIZE_VALUE: 400 # for rangescaling MAX_SCALE_FACTOR: 1.25 # for stepscaling MIN_SCALE_FACTOR: 0.75 # for stepscaling SCALE_STEP_SIZE: 0.25 # for stepscaling MIRROR: True BATCH_SIZE: 4 DATASET: DATA_DIR: "./dataset/mini_pet/" IMAGE_TYPE: "rgb" # choice rgb or rgba NUM_CLASSES: 3 TEST_FILE_LIST: "./dataset/mini_pet/file_list/test_list.txt" TRAIN_FILE_LIST: "./dataset/mini_pet/file_list/train_list.txt" VAL_FILE_LIST: "./dataset/mini_pet/file_list/val_list.txt" VIS_FILE_LIST: "./dataset/mini_pet/file_list/test_list.txt" IGNORE_INDEX: 255 SEPARATOR: " " FREEZE: MODEL_FILENAME: "__model__" PARAMS_FILENAME: "__params__" MODEL: MODEL_NAME: "unet" DEFAULT_NORM_TYPE: "bn" TEST: TEST_MODEL: "./saved_model/unet_pet/final/" TRAIN: MODEL_SAVE_DIR: "./saved_model/unet_pet/" PRETRAINED_MODEL_DIR: "./test/models/unet_coco_init/" SNAPSHOT_EPOCH: 10 SOLVER: NUM_EPOCHS: 100 LR: 0.005 LR_POLICY: "poly" OPTIMIZER: "adam"