# HRNet模型训练教程
* 本教程旨在介绍如何通过使用PaddleSeg提供的 ***`HRNet`*** 预训练模型在自定义数据集上进行训练。
* 在阅读本教程前,请确保您已经了解过PaddleSeg的[快速入门](../README.md#快速入门)和[基础功能](../README.md#基础功能)等章节,以便对PaddleSeg有一定的了解
* 本教程的所有命令都基于PaddleSeg主目录进行执行
## 一. 准备待训练数据
我们提前准备好了一份数据集,通过以下代码进行下载
```shell
python dataset/download_pet.py
```
## 二. 下载预训练模型
关于PaddleSeg支持的所有预训练模型的列表,我们可以从[模型组合](#模型组合)中查看我们所需模型的名字和配置
接着下载对应的预训练模型
```shell
python pretrained_model/download_model.py hrnet_w18_bn_cityscapes
```
## 三. 准备配置
接着我们需要确定相关配置,从本教程的角度,配置分为三部分:
* 数据集
* 训练集主目录
* 训练集文件列表
* 测试集文件列表
* 评估集文件列表
* 预训练模型
* 预训练模型名称
* 预训练模型各阶段通道数设置
* 预训练模型的Normalization类型
* 预训练模型路径
* 其他
* 学习率
* Batch大小
* ...
在三者中,预训练模型的配置尤为重要,如果模型配置错误,会导致预训练的参数没有加载,进而影响收敛速度。预训练模型相关的配置如第二步所展示。
数据集的配置和数据路径有关,在本教程中,数据存放在`dataset/mini_pet`中
其他配置则根据数据集和机器环境的情况进行调节,最终我们保存一个如下内容的yaml配置文件,存放路径为**configs/hrnet_w18_pet.yaml**
```yaml
# 数据集配置
DATASET:
DATA_DIR: "./dataset/mini_pet/"
NUM_CLASSES: 3
TEST_FILE_LIST: "./dataset/mini_pet/file_list/test_list.txt"
TRAIN_FILE_LIST: "./dataset/mini_pet/file_list/train_list.txt"
VAL_FILE_LIST: "./dataset/mini_pet/file_list/val_list.txt"
VIS_FILE_LIST: "./dataset/mini_pet/file_list/test_list.txt"
# 预训练模型配置
MODEL:
MODEL_NAME: "hrnet"
DEFAULT_NORM_TYPE: "bn"
HRNET:
STAGE2:
NUM_CHANNELS: [18, 36]
STAGE3:
NUM_CHANNELS: [18, 36, 72]
STAGE4:
NUM_CHANNELS: [18, 36, 72, 144]
# 其他配置
TRAIN_CROP_SIZE: (512, 512)
EVAL_CROP_SIZE: (512, 512)
AUG:
AUG_METHOD: "unpadding"
FIX_RESIZE_SIZE: (512, 512)
BATCH_SIZE: 4
TRAIN:
PRETRAINED_MODEL_DIR: "./pretrained_model/hrnet_w18_bn_cityscapes/"
MODEL_SAVE_DIR: "./saved_model/hrnet_w18_bn_pet/"
SNAPSHOT_EPOCH: 10
TEST:
TEST_MODEL: "./saved_model/hrnet_w18_bn_pet/final"
SOLVER:
NUM_EPOCHS: 100
LR: 0.005
LR_POLICY: "poly"
OPTIMIZER: "sgd"
```
## 四. 配置/数据校验
在开始训练和评估之前,我们还需要对配置和数据进行一次校验,确保数据和配置是正确的。使用下述命令启动校验流程
```shell
python pdseg/check.py --cfg ./configs/hrnet_w18_pet.yaml
```
## 五. 开始训练
校验通过后,使用下述命令启动训练
```shell
python pdseg/train.py --use_gpu --cfg ./configs/hrnet_w18_pet.yaml
```
## 六. 进行评估
模型训练完成,使用下述命令启动评估
```shell
python pdseg/eval.py --use_gpu --cfg ./configs/hrnet_w18_pet.yaml
```
## 模型组合
|预训练模型名称|BackBone|Norm Type|数据集|配置|
|-|-|-|-|-|
|hrnet_w18_bn_cityscapes|-|bn| ImageNet | MODEL.MODEL_NAME: hrnet
MODEL.HRNET.STAGE2.NUM_CHANNELS: [18, 36]
MODEL.HRNET.STAGE3.NUM_CHANNELS: [18, 36, 72]
MODEL.HRNET.STAGE4.NUM_CHANNELS: [18, 36, 72, 144]
MODEL.DEFAULT_NORM_TYPE: bn|
| hrnet_w18_bn_imagenet |-|bn| ImageNet | MODEL.MODEL_NAME: hrnet
MODEL.HRNET.STAGE2.NUM_CHANNELS: [18, 36]
MODEL.HRNET.STAGE3.NUM_CHANNELS: [18, 36, 72]
MODEL.HRNET.STAGE4.NUM_CHANNELS: [18, 36, 72, 144]
MODEL.DEFAULT_NORM_TYPE: bn |
| hrnet_w30_bn_imagenet |-|bn| ImageNet | MODEL.MODEL_NAME: hrnet
MODEL.HRNET.STAGE2.NUM_CHANNELS: [30, 60]
MODEL.HRNET.STAGE3.NUM_CHANNELS: [30, 60, 120]
MODEL.HRNET.STAGE4.NUM_CHANNELS: [30, 60, 120, 240]
MODEL.DEFAULT_NORM_TYPE: bn |
| hrnet_w32_bn_imagenet |-|bn| ImageNet | MODEL.MODEL_NAME: hrnet
MODEL.HRNET.STAGE2.NUM_CHANNELS: [32, 64]
MODEL.HRNET.STAGE3.NUM_CHANNELS: [32, 64, 128]
MODEL.HRNET.STAGE4.NUM_CHANNELS: [32, 64, 128, 256]
MODEL.DEFAULT_NORM_TYPE: bn |
| hrnet_w40_bn_imagenet |-|bn| ImageNet | MODEL.MODEL_NAME: hrnet
MODEL.HRNET.STAGE2.NUM_CHANNELS: [40, 80]
MODEL.HRNET.STAGE3.NUM_CHANNELS: [40, 80, 160]
MODEL.HRNET.STAGE4.NUM_CHANNELS: [40, 80, 160, 320]
MODEL.DEFAULT_NORM_TYPE: bn |
| hrnet_w44_bn_imagenet |-|bn| ImageNet | MODEL.MODEL_NAME: hrnet
MODEL.HRNET.STAGE2.NUM_CHANNELS: [44, 88]
MODEL.HRNET.STAGE3.NUM_CHANNELS: [44, 88, 176]
MODEL.HRNET.STAGE4.NUM_CHANNELS: [44, 88, 176, 352]
MODEL.DEFAULT_NORM_TYPE: bn |
| hrnet_w48_bn_imagenet |-|bn| ImageNet | MODEL.MODEL_NAME: hrnet
MODEL.HRNET.STAGE2.NUM_CHANNELS: [48, 96]
MODEL.HRNET.STAGE3.NUM_CHANNELS: [48, 96, 192]
MODEL.HRNET.STAGE4.NUM_CHANNELS: [48, 96, 192, 384]
MODEL.DEFAULT_NORM_TYPE: bn |
| hrnet_w64_bn_imagenet |-|bn| ImageNet | MODEL.MODEL_NAME: hrnet
MODEL.HRNET.STAGE2.NUM_CHANNELS: [64, 128]
MODEL.HRNET.STAGE3.NUM_CHANNELS: [64, 128, 256]
MODEL.HRNET.STAGE4.NUM_CHANNELS: [64, 128, 256, 512]
MODEL.DEFAULT_NORM_TYPE: bn |