# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import paddle.fluid as fluid import numpy as np from PIL import Image from dygraph.cvlibs import manager from dygraph.transforms import Compose @manager.DATASETS.add_component class Dataset(fluid.io.Dataset): """Pass in a custom dataset that conforms to the format. Args: dataset_root: The dataset directory. num_classes: Number of classes. mode: which part of dataset to use. it is one of ('train', 'val', 'test'). Default: 'train'. train_list: The train dataset file. When image_set is 'train', train_list is necessary. The contents of train_list file are as follow: image1.jpg ground_truth1.png image2.jpg ground_truth2.png val_list: The evaluation dataset file. When image_set is 'val', val_list is necessary. The contents is the same as train_list test_list: The test dataset file. When image_set is 'test', test_list is necessary. The annotation file is not necessary in test_list file. separator: The separator of dataset list. Default: ' '. transforms: Transforms for image. Examples: todo """ def __init__(self, dataset_root, num_classes, mode='train', train_list=None, val_list=None, test_list=None, separator=' ', transforms=None): self.dataset_root = dataset_root self.transforms = Compose(transforms) self.file_list = list() self.mode = mode self.num_classes = num_classes if mode.lower() not in ['train', 'val', 'test']: raise Exception( "mode should be 'train', 'val' or 'test', but got {}.".format( mode)) if self.transforms is None: raise Exception("`transforms` is necessary, but it is None.") self.dataset_root = dataset_root if not os.path.exists(self.dataset_root): raise Exception('there is not `dataset_root`: {}.'.format( self.dataset_root)) if mode == 'train': if train_list is None: raise Exception( 'When `mode` is "train", `train_list` is necessary, but it is None.' ) elif not os.path.exists(train_list): raise Exception( '`train_list` is not found: {}'.format(train_list)) else: file_list = train_list elif mode == 'val': if val_list is None: raise Exception( 'When `mode` is "val", `val_list` is necessary, but it is None.' ) elif not os.path.exists(val_list): raise Exception('`val_list` is not found: {}'.format(val_list)) else: file_list = val_list else: if test_list is None: raise Exception( 'When `mode` is "test", `test_list` is necessary, but it is None.' ) elif not os.path.exists(test_list): raise Exception( '`test_list` is not found: {}'.format(test_list)) else: file_list = test_list with open(file_list, 'r') as f: for line in f: items = line.strip().split(separator) if len(items) != 2: if mode == 'train' or mode == 'val': raise Exception( "File list format incorrect! In training or evaluation task it should be" " image_name{}label_name\\n".format(separator)) image_path = os.path.join(self.dataset_root, items[0]) grt_path = None else: image_path = os.path.join(self.dataset_root, items[0]) grt_path = os.path.join(self.dataset_root, items[1]) self.file_list.append([image_path, grt_path]) def __getitem__(self, idx): image_path, grt_path = self.file_list[idx] if self.mode == 'test': im, im_info, _ = self.transforms(im=image_path) im = im[np.newaxis, ...] return im, im_info, image_path elif self.mode == 'val': im, im_info, _ = self.transforms(im=image_path) im = im[np.newaxis, ...] label = np.asarray(Image.open(grt_path)) label = label[np.newaxis, np.newaxis, :, :] return im, im_info, label else: im, im_info, label = self.transforms(im=image_path, label=grt_path) return im, label def __len__(self): return len(self.file_list)