# -*- encoding: utf-8 -*- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle from paddle import nn import paddle.nn.functional as F from paddle.nn import Conv2d from paddle.nn import SyncBatchNorm as BatchNorm from paddle.nn.layer import activation class ConvBnRelu(nn.Layer): def __init__(self, in_channels, out_channels, kernel_size, **kwargs): super(ConvBnRelu, self).__init__() self.conv = Conv2d(in_channels, out_channels, kernel_size, **kwargs) self.batch_norm = BatchNorm(out_channels) def forward(self, x): x = self.conv(x) x = self.batch_norm(x) x = F.relu(x) return x class ConvBn(nn.Layer): def __init__(self, in_channels, out_channels, kernel_size, **kwargs): super(ConvBn, self).__init__() self.conv = Conv2d(in_channels, out_channels, kernel_size, **kwargs) self.batch_norm = BatchNorm(out_channels) def forward(self, x): x = self.conv(x) x = self.batch_norm(x) return x class ConvReluPool(nn.Layer): def __init__(self, in_channels, out_channels): super(ConvReluPool, self).__init__() self.conv = Conv2d( in_channels, out_channels, kernel_size=3, stride=1, padding=1, dilation=1) def forward(self, x): x = self.conv(x) x = F.relu(x) x = F.pool2d(x, pool_size=2, pool_type="max", pool_stride=2) return x # class ConvBnReluUpsample(nn.Layer): # def __init__(self, in_channels, out_channels): # super(ConvBnReluUpsample, self).__init__() # self.conv_bn_relu = ConvBnRelu(in_channels, out_channels) # def forward(self, x, upsample_scale=2): # x = self.conv_bn_relu(x) # new_shape = [x.shape[2] * upsample_scale, x.shape[3] * upsample_scale] # x = F.resize_bilinear(x, new_shape) # return x class DepthwiseConvBnRelu(nn.Layer): def __init__(self, in_channels, out_channels, kernel_size, **kwargs): super(DepthwiseConvBnRelu, self).__init__() self.depthwise_conv = ConvBn( in_channels, out_channels=in_channels, kernel_size=kernel_size, groups=in_channels, **kwargs) self.piontwise_conv = ConvBnRelu( in_channels, out_channels, kernel_size=1, groups=1) def forward(self, x): x = self.depthwise_conv(x) x = self.piontwise_conv(x) return x class Activation(nn.Layer): """ The wrapper of activations For example: >>> relu = Activation("relu") >>> print(relu) >>> sigmoid = Activation("sigmoid") >>> print(sigmoid) >>> not_exit_one = Activation("not_exit_one") KeyError: "not_exit_one does not exist in the current dict_keys(['elu', 'gelu', 'hardshrink', 'tanh', 'hardtanh', 'prelu', 'relu', 'relu6', 'selu', 'leakyrelu', 'sigmoid', 'softmax', 'softplus', 'softshrink', 'softsign', 'tanhshrink', 'logsigmoid', 'logsoftmax', 'hsigmoid'])" Args: act (str): the activation name in lowercase """ def __init__(self, act=None): super(Activation, self).__init__() self._act = act upper_act_names = activation.__all__ lower_act_names = [act.lower() for act in upper_act_names] act_dict = dict(zip(lower_act_names, upper_act_names)) if act is not None: if act in act_dict.keys(): act_name = act_dict[act] self.act_func = eval("activation.{}()".format(act_name)) else: raise KeyError("{} does not exist in the current {}".format( act, act_dict.keys())) def forward(self, x): if self._act is not None: return self.act_func(x) else: return x