# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import paddle import paddle.nn.functional as F from paddle import nn from paddleseg.cvlibs import manager from paddleseg.models.common.layer_libs import ConvBNReLU, AuxLayer from paddleseg.utils import utils @manager.MODELS.add_component class GCNet(nn.Layer): """ The GCNet implementation based on PaddlePaddle. The original article refers to Cao, Yue, et al. "GCnet: Non-local networks meet squeeze-excitation networks and beyond." (https://arxiv.org/pdf/1904.11492.pdf) Args: num_classes (int): the unique number of target classes. backbone (Paddle.nn.Layer): backbone network, currently support Resnet50/101. backbone_indices (tuple): two values in the tuple indicate the indices of output of backbone. gc_channels (int): input channels to Global Context Block. Default to 512. ratio (float): it indicates the ratio of attention channels and gc_channels. Default to 1/4. enable_auxiliary_loss (bool): a bool values indicates whether adding auxiliary loss. Default to True. pretrained (str): the path of pretrained model. Default to None. """ def __init__(self, num_classes, backbone, backbone_indices=(2, 3), gc_channels=512, ratio=1 / 4, enable_auxiliary_loss=True, pretrained=None): super(GCNet, self).__init__() self.backbone = backbone backbone_channels = [ backbone.feat_channels[i] for i in backbone_indices ] self.head = GCNetHead( num_classes, backbone_indices, backbone_channels, gc_channels, ratio, enable_auxiliary_loss) utils.load_entire_model(self, pretrained) def forward(self, input): feat_list = self.backbone(input) logit_list = self.head(feat_list) return [ F.resize_bilinear(logit, input.shape[2:]) for logit in logit_list ] class GCNetHead(nn.Layer): """ The GCNetHead implementation. Args: num_classes (int): the unique number of target classes. backbone_indices (tuple): two values in the tuple indicate the indices of output of backbone. the first index will be taken as a deep-supervision feature in auxiliary layer; the second one will be taken as input of GlobalContextBlock. Usually backbone consists of four downsampling stage, and return an output of each stage, so we set default (2, 3), which means taking feature map of the third stage (res4b22) and the fourth stage (res5c) in backbone. backbone_channels (tuple): the same length with "backbone_indices". It indicates the channels of corresponding index. gc_channels (int): input channels to Global Context Block. Default to 512. ratio (float): it indicates the ratio of attention channels and gc_channels. Default to 1/4. enable_auxiliary_loss (bool): a bool values indicates whether adding auxiliary loss. Default to True. """ def __init__(self, num_classes, backbone_indices=(2, 3), backbone_channels=(1024, 2048), gc_channels=512, ratio=1 / 4, enable_auxiliary_loss=True): super(GCNetHead, self).__init__() in_channels = backbone_channels[1] self.conv_bn_relu1 = ConvBNReLU( in_channels=in_channels, out_channels=gc_channels, kernel_size=3, padding=1) self.gc_block = GlobalContextBlock(in_channels=gc_channels, ratio=ratio) self.conv_bn_relu2 = ConvBNReLU( in_channels=gc_channels, out_channels=gc_channels, kernel_size=3, padding=1) self.conv_bn_relu3 = ConvBNReLU( in_channels=in_channels + gc_channels, out_channels=gc_channels, kernel_size=3, padding=1) self.conv = nn.Conv2d( in_channels=gc_channels, out_channels=num_classes, kernel_size=1) if enable_auxiliary_loss: self.auxlayer = AuxLayer( in_channels=backbone_channels[0], inter_channels=backbone_channels[0] // 4, out_channels=num_classes) self.backbone_indices = backbone_indices self.enable_auxiliary_loss = enable_auxiliary_loss self.init_weight() def forward(self, feat_list): logit_list = [] x = feat_list[self.backbone_indices[1]] output = self.conv_bn_relu1(x) output = self.gc_block(output) output = self.conv_bn_relu2(output) output = paddle.concat([x, output], axis=1) output = self.conv_bn_relu3(output) output = F.dropout(output, p=0.1) # dropout_prob logit = self.conv(output) logit_list.append(logit) if self.enable_auxiliary_loss: low_level_feat = feat_list[self.backbone_indices[0]] auxiliary_logit = self.auxlayer(low_level_feat) logit_list.append(auxiliary_logit) return logit_list def init_weight(self, pretrained_model=None): """ Initialize the parameters of model parts. """ pass class GlobalContextBlock(nn.Layer): """ Global Context Block implementation. Args: in_channels (int): input channels of Global Context Block ratio (float): the channels of attention map. """ def __init__(self, in_channels, ratio): super(GlobalContextBlock, self).__init__() self.conv_mask = nn.Conv2d( in_channels=in_channels, out_channels=1, kernel_size=1) self.softmax = nn.Softmax(axis=2) inter_channels = int(in_channels * ratio) self.channel_add_conv = nn.Sequential( nn.Conv2d( in_channels=in_channels, out_channels=inter_channels, kernel_size=1), nn.LayerNorm(normalized_shape=[inter_channels, 1, 1]), nn.ReLU(), nn.Conv2d( in_channels=inter_channels, out_channels=in_channels, kernel_size=1)) def global_context_block(self, x): batch, channel, height, width = x.shape # [N, C, H * W] input_x = paddle.reshape(x, shape=[batch, channel, height * width]) # [N, 1, C, H * W] input_x = paddle.unsqueeze(input_x, axis=1) # [N, 1, H, W] context_mask = self.conv_mask(x) # [N, 1, H * W] context_mask = paddle.reshape( context_mask, shape=[batch, 1, height * width]) context_mask = self.softmax(context_mask) # [N, 1, H * W, 1] context_mask = paddle.unsqueeze(context_mask, axis=-1) # [N, 1, C, 1] context = paddle.matmul(input_x, context_mask) # [N, C, 1, 1] context = paddle.reshape(context, shape=[batch, channel, 1, 1]) return context def forward(self, x): context = self.global_context_block(x) channel_add_term = self.channel_add_conv(context) out = x + channel_add_term return out