batch_size: 2 iters: 500 train_dataset: type: Cityscapes dataset_root: data/cityscapes transforms: - type: ResizeStepScaling min_scale_factor: 0.5 max_scale_factor: 2.0 scale_step_size: 0.25 - type: RandomPaddingCrop crop_size: [1024, 512] - type: RandomHorizontalFlip - type: RandomDistort - type: Normalize mode: train val_dataset: type: Cityscapes dataset_root: data/cityscapes transforms: - type: Normalize mode: val model: type: DeepLabV3P backbone: type: ResNet50_vd output_stride: 8 num_classes: 19 backbone_indices: [0, 3] aspp_ratios: [1, 12, 24, 36] optimizer: type: sgd weight_decay: 0.00004 learning_rate: value: 0.01 decay: type: poly power: 0.9 end_lr: 0.0 loss: types: - type: CrossEntropyLoss ignore_index: 255 coef: [1]