# coding: utf8 # copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle import paddle.fluid as fluid from paddle.fluid.initializer import MSRA from paddle.fluid.param_attr import ParamAttr from utils.config import cfg def conv_bn_layer(input, filter_size, num_filters, stride=1, padding=1, num_groups=1, if_act=True, name=None): conv = fluid.layers.conv2d( input=input, num_filters=num_filters, filter_size=filter_size, stride=stride, padding=(filter_size - 1) // 2, groups=num_groups, act=None, # param_attr=ParamAttr(initializer=MSRA(), learning_rate=1.0, name=name + '_weights'), param_attr=ParamAttr( initializer=fluid.initializer.Normal(scale=0.001), learning_rate=1.0, name=name + '_weights'), bias_attr=False) bn_name = name + '_bn' bn = fluid.layers.batch_norm( input=conv, param_attr=ParamAttr( name=bn_name + "_scale", initializer=fluid.initializer.Constant(1.0)), bias_attr=ParamAttr( name=bn_name + "_offset", initializer=fluid.initializer.Constant(0.0)), moving_mean_name=bn_name + '_mean', moving_variance_name=bn_name + '_variance') if if_act: bn = fluid.layers.relu(bn) return bn def basic_block(input, num_filters, stride=1, downsample=False, name=None): residual = input conv = conv_bn_layer( input=input, filter_size=3, num_filters=num_filters, stride=stride, name=name + '_conv1') conv = conv_bn_layer( input=conv, filter_size=3, num_filters=num_filters, if_act=False, name=name + '_conv2') if downsample: residual = conv_bn_layer( input=input, filter_size=1, num_filters=num_filters, if_act=False, name=name + '_downsample') return fluid.layers.elementwise_add(x=residual, y=conv, act='relu') def bottleneck_block(input, num_filters, stride=1, downsample=False, name=None): residual = input conv = conv_bn_layer( input=input, filter_size=1, num_filters=num_filters, name=name + '_conv1') conv = conv_bn_layer( input=conv, filter_size=3, num_filters=num_filters, stride=stride, name=name + '_conv2') conv = conv_bn_layer( input=conv, filter_size=1, num_filters=num_filters * 4, if_act=False, name=name + '_conv3') if downsample: residual = conv_bn_layer( input=input, filter_size=1, num_filters=num_filters * 4, if_act=False, name=name + '_downsample') return fluid.layers.elementwise_add(x=residual, y=conv, act='relu') def fuse_layers(x, channels, multi_scale_output=True, name=None): out = [] for i in range(len(channels) if multi_scale_output else 1): residual = x[i] shape = residual.shape width = shape[-1] height = shape[-2] for j in range(len(channels)): if j > i: y = conv_bn_layer( x[j], filter_size=1, num_filters=channels[i], if_act=False, name=name + '_layer_' + str(i + 1) + '_' + str(j + 1)) y = fluid.layers.resize_bilinear( input=y, out_shape=[height, width]) residual = fluid.layers.elementwise_add( x=residual, y=y, act=None) elif j < i: y = x[j] for k in range(i - j): if k == i - j - 1: y = conv_bn_layer( y, filter_size=3, num_filters=channels[i], stride=2, if_act=False, name=name + '_layer_' + str(i + 1) + '_' + str(j + 1) + '_' + str(k + 1)) else: y = conv_bn_layer( y, filter_size=3, num_filters=channels[j], stride=2, name=name + '_layer_' + str(i + 1) + '_' + str(j + 1) + '_' + str(k + 1)) residual = fluid.layers.elementwise_add( x=residual, y=y, act=None) residual = fluid.layers.relu(residual) out.append(residual) return out def branches(x, block_num, channels, name=None): out = [] for i in range(len(channels)): residual = x[i] for j in range(block_num): residual = basic_block( residual, channels[i], name=name + '_branch_layer_' + str(i + 1) + '_' + str(j + 1)) out.append(residual) return out def high_resolution_module(x, channels, multi_scale_output=True, name=None): residual = branches(x, 4, channels, name=name) out = fuse_layers( residual, channels, multi_scale_output=multi_scale_output, name=name) return out def transition_layer(x, in_channels, out_channels, name=None): num_in = len(in_channels) num_out = len(out_channels) out = [] for i in range(num_out): if i < num_in: if in_channels[i] != out_channels[i]: residual = conv_bn_layer( x[i], filter_size=3, num_filters=out_channels[i], name=name + '_layer_' + str(i + 1)) out.append(residual) else: out.append(x[i]) else: residual = conv_bn_layer( x[-1], filter_size=3, num_filters=out_channels[i], stride=2, name=name + '_layer_' + str(i + 1)) out.append(residual) return out def stage(x, num_modules, channels, multi_scale_output=True, name=None): out = x for i in range(num_modules): if i == num_modules - 1 and multi_scale_output == False: out = high_resolution_module( out, channels, multi_scale_output=False, name=name + '_' + str(i + 1)) else: out = high_resolution_module( out, channels, name=name + '_' + str(i + 1)) return out def layer1(input, name=None): conv = input for i in range(4): conv = bottleneck_block( conv, num_filters=64, downsample=True if i == 0 else False, name=name + '_' + str(i + 1)) return conv def aux_head(input, last_inp_channels, num_classes): x = conv_bn_layer( input=input, filter_size=1, num_filters=last_inp_channels, stride=1, padding=0, name='aux_head_conv1') x = fluid.layers.conv2d( input=x, num_filters=num_classes, filter_size=1, stride=1, padding=0, act=None, # param_attr=ParamAttr(initializer=MSRA(), learning_rate=1.0, name='aux_head_conv2_weights'), param_attr=ParamAttr( initializer=fluid.initializer.Normal(scale=0.001), learning_rate=1.0, name='aux_head_conv2_weights'), bias_attr=ParamAttr( initializer=fluid.initializer.Constant(0.0), name="aux_head_conv2_bias")) return x def conv3x3_ocr(input, ocr_mid_channels): x = conv_bn_layer( input=input, filter_size=3, num_filters=ocr_mid_channels, stride=1, padding=1, name='conv3x3_ocr') return x def f_pixel(input, key_channels): x = conv_bn_layer( input=input, filter_size=1, num_filters=key_channels, stride=1, padding=0, name='f_pixel_conv1') x = conv_bn_layer( input=x, filter_size=1, num_filters=key_channels, stride=1, padding=0, name='f_pixel_conv2') return x def f_object(input, key_channels): x = conv_bn_layer( input=input, filter_size=1, num_filters=key_channels, stride=1, padding=0, name='f_object_conv1') x = conv_bn_layer( input=x, filter_size=1, num_filters=key_channels, stride=1, padding=0, name='f_object_conv2') return x def f_down(input, key_channels): x = conv_bn_layer( input=input, filter_size=1, num_filters=key_channels, stride=1, padding=0, name='f_down_conv') return x def f_up(input, in_channels): x = conv_bn_layer( input=input, filter_size=1, num_filters=in_channels, stride=1, padding=0, name='f_up_conv') return x def object_context_block(x, proxy, in_channels, key_channels, scale): batch_size, _, h, w = x.shape if scale > 1: x = fluid.layers.pool2d(x, pool_size=[scale, scale], pool_type='max') query = f_pixel(x, key_channels) query = fluid.layers.reshape( query, shape=[batch_size, key_channels, query.shape[2] * query.shape[3]]) query = fluid.layers.transpose(query, perm=[0, 2, 1]) key = f_object(proxy, key_channels) key = fluid.layers.reshape( key, shape=[batch_size, key_channels, key.shape[2] * key.shape[3]]) value = f_down(proxy, key_channels) value = fluid.layers.reshape( value, shape=[batch_size, key_channels, value.shape[2] * value.shape[3]]) value = fluid.layers.transpose(value, perm=[0, 2, 1]) sim_map = fluid.layers.matmul(query, key) sim_map = (key_channels**-.5) * sim_map sim_map = fluid.layers.softmax(sim_map, axis=-1) context = fluid.layers.matmul(sim_map, value) context = fluid.layers.transpose(context, perm=[0, 2, 1]) context = fluid.layers.reshape( context, shape=[batch_size, key_channels, x.shape[2], x.shape[3]]) context = f_up(context, in_channels) if scale > 1: context = fluid.layers.resize_bilinear(context, out_shape=[h, w]) return context def ocr_gather_head(feats, probs, scale=1): feats = fluid.layers.reshape( feats, shape=[feats.shape[0], feats.shape[1], feats.shape[2] * feats.shape[3]]) feats = fluid.layers.transpose(feats, perm=[0, 2, 1]) probs = fluid.layers.reshape( probs, shape=[probs.shape[0], probs.shape[1], probs.shape[2] * probs.shape[3]]) probs = fluid.layers.softmax(scale * probs, axis=2) ocr_context = fluid.layers.matmul(probs, feats) ocr_context = fluid.layers.transpose(ocr_context, perm=[0, 2, 1]) ocr_context = fluid.layers.unsqueeze(ocr_context, axes=[3]) return ocr_context def ocr_distri_head(feats, proxy_feats, ocr_mid_channels, ocr_key_channels, scale=1, dropout=0.05): context = object_context_block(feats, proxy_feats, ocr_mid_channels, ocr_key_channels, scale) x = fluid.layers.concat([context, feats], axis=1) x = conv_bn_layer( input=x, filter_size=1, num_filters=ocr_mid_channels, stride=1, padding=0, name='spatial_ocr_conv') x = fluid.layers.dropout(x, dropout_prob=dropout) return x def cls_head(input, num_classes): x = fluid.layers.conv2d( input=input, num_filters=num_classes, filter_size=1, stride=1, padding=0, act=None, # param_attr=ParamAttr(initializer=MSRA(), learning_rate=1.0, name='cls_head_conv_weights'), param_attr=ParamAttr( initializer=fluid.initializer.Normal(scale=0.001), learning_rate=1.0, name='cls_head_conv_weights'), bias_attr=ParamAttr( initializer=fluid.initializer.Constant(0.0), name="cls_head_conv_bias")) return x def ocr_module(input, last_inp_channels, num_classes, ocr_mid_channels, ocr_key_channels): out_aux = aux_head(input, last_inp_channels, num_classes) feats = conv3x3_ocr(input, ocr_mid_channels) context = ocr_gather_head(feats, out_aux) feats = ocr_distri_head(feats, context, ocr_mid_channels, ocr_key_channels) out = cls_head(feats, num_classes) return out, out_aux def high_resolution_ocr_net(input, num_classes): channels_2 = cfg.MODEL.HRNET.STAGE2.NUM_CHANNELS channels_3 = cfg.MODEL.HRNET.STAGE3.NUM_CHANNELS channels_4 = cfg.MODEL.HRNET.STAGE4.NUM_CHANNELS num_modules_2 = cfg.MODEL.HRNET.STAGE2.NUM_MODULES num_modules_3 = cfg.MODEL.HRNET.STAGE3.NUM_MODULES num_modules_4 = cfg.MODEL.HRNET.STAGE4.NUM_MODULES ocr_mid_channels = cfg.MODEL.OCR.OCR_MID_CHANNELS ocr_key_channels = cfg.MODEL.OCR.OCR_KEY_CHANNELS last_inp_channels = sum(channels_4) x = conv_bn_layer( input=input, filter_size=3, num_filters=64, stride=2, if_act=True, name='layer1_1') x = conv_bn_layer( input=x, filter_size=3, num_filters=64, stride=2, if_act=True, name='layer1_2') la1 = layer1(x, name='layer2') tr1 = transition_layer([la1], [256], channels_2, name='tr1') st2 = stage(tr1, num_modules_2, channels_2, name='st2') tr2 = transition_layer(st2, channels_2, channels_3, name='tr2') st3 = stage(tr2, num_modules_3, channels_3, name='st3') tr3 = transition_layer(st3, channels_3, channels_4, name='tr3') st4 = stage(tr3, num_modules_4, channels_4, name='st4') # upsample shape = st4[0].shape height, width = shape[-2], shape[-1] st4[1] = fluid.layers.resize_bilinear(st4[1], out_shape=[height, width]) st4[2] = fluid.layers.resize_bilinear(st4[2], out_shape=[height, width]) st4[3] = fluid.layers.resize_bilinear(st4[3], out_shape=[height, width]) feats = fluid.layers.concat(st4, axis=1) out, out_aux = ocr_module(feats, last_inp_channels, num_classes, ocr_mid_channels, ocr_key_channels) out = fluid.layers.resize_bilinear(out, input.shape[2:]) out_aux = fluid.layers.resize_bilinear(out_aux, input.shape[2:]) return out, out_aux def ocrnet(input, num_classes): logit = high_resolution_ocr_net(input, num_classes) return logit