# coding: utf8 # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import time import os import os.path as osp import numpy as np import six import yaml import math import cv2 from . import logging def seconds_to_hms(seconds): h = math.floor(seconds / 3600) m = math.floor((seconds - h * 3600) / 60) s = int(seconds - h * 3600 - m * 60) hms_str = "{}:{}:{}".format(h, m, s) return hms_str def setting_environ_flags(): if 'FLAGS_eager_delete_tensor_gb' not in os.environ: os.environ['FLAGS_eager_delete_tensor_gb'] = '0.0' if 'FLAGS_allocator_strategy' not in os.environ: os.environ['FLAGS_allocator_strategy'] = 'auto_growth' if "CUDA_VISIBLE_DEVICES" in os.environ: if os.environ["CUDA_VISIBLE_DEVICES"].count("-1") > 0: os.environ["CUDA_VISIBLE_DEVICES"] = "" def get_environ_info(): setting_environ_flags() import paddle.fluid as fluid info = dict() info['place'] = 'cpu' info['num'] = int(os.environ.get('CPU_NUM', 1)) if os.environ.get('CUDA_VISIBLE_DEVICES', None) != "": if hasattr(fluid.core, 'get_cuda_device_count'): gpu_num = 0 try: gpu_num = fluid.core.get_cuda_device_count() except: os.environ['CUDA_VISIBLE_DEVICES'] = '' pass if gpu_num > 0: info['place'] = 'cuda' info['num'] = fluid.core.get_cuda_device_count() return info def parse_param_file(param_file, return_shape=True): from paddle.fluid.proto.framework_pb2 import VarType f = open(param_file, 'rb') version = np.fromstring(f.read(4), dtype='int32') lod_level = np.fromstring(f.read(8), dtype='int64') for i in range(int(lod_level)): _size = np.fromstring(f.read(8), dtype='int64') _ = f.read(_size) version = np.fromstring(f.read(4), dtype='int32') tensor_desc = VarType.TensorDesc() tensor_desc_size = np.fromstring(f.read(4), dtype='int32') tensor_desc.ParseFromString(f.read(int(tensor_desc_size))) tensor_shape = tuple(tensor_desc.dims) if return_shape: f.close() return tuple(tensor_desc.dims) if tensor_desc.data_type != 5: raise Exception( "Unexpected data type while parse {}".format(param_file)) data_size = 4 for i in range(len(tensor_shape)): data_size *= tensor_shape[i] weight = np.fromstring(f.read(data_size), dtype='float32') f.close() return np.reshape(weight, tensor_shape) def fuse_bn_weights(exe, main_prog, weights_dir): import paddle.fluid as fluid logging.info("Try to fuse weights of batch_norm...") bn_vars = list() for block in main_prog.blocks: ops = list(block.ops) for op in ops: if op.type == 'affine_channel': scale_name = op.input('Scale')[0] bias_name = op.input('Bias')[0] prefix = scale_name[:-5] mean_name = prefix + 'mean' variance_name = prefix + 'variance' if not osp.exists(osp.join( weights_dir, mean_name)) or not osp.exists( osp.join(weights_dir, variance_name)): logging.info( "There's no batch_norm weight found to fuse, skip fuse_bn." ) return bias = block.var(bias_name) pretrained_shape = parse_param_file( osp.join(weights_dir, bias_name)) actual_shape = tuple(bias.shape) if pretrained_shape != actual_shape: continue bn_vars.append( [scale_name, bias_name, mean_name, variance_name]) eps = 1e-5 for names in bn_vars: scale_name, bias_name, mean_name, variance_name = names scale = parse_param_file( osp.join(weights_dir, scale_name), return_shape=False) bias = parse_param_file( osp.join(weights_dir, bias_name), return_shape=False) mean = parse_param_file( osp.join(weights_dir, mean_name), return_shape=False) variance = parse_param_file( osp.join(weights_dir, variance_name), return_shape=False) bn_std = np.sqrt(np.add(variance, eps)) new_scale = np.float32(np.divide(scale, bn_std)) new_bias = bias - mean * new_scale scale_tensor = fluid.global_scope().find_var(scale_name).get_tensor() bias_tensor = fluid.global_scope().find_var(bias_name).get_tensor() scale_tensor.set(new_scale, exe.place) bias_tensor.set(new_bias, exe.place) if len(bn_vars) == 0: logging.info( "There's no batch_norm weight found to fuse, skip fuse_bn.") else: logging.info("There's {} batch_norm ops been fused.".format( len(bn_vars))) def load_pdparams(exe, main_prog, model_dir): import paddle.fluid as fluid from paddle.fluid.proto.framework_pb2 import VarType from paddle.fluid.framework import Program vars_to_load = list() import pickle with open(osp.join(model_dir, 'model.pdparams'), 'rb') as f: params_dict = pickle.load(f) if six.PY2 else pickle.load( f, encoding='latin1') unused_vars = list() for var in main_prog.list_vars(): if not isinstance(var, fluid.framework.Parameter): continue if var.name not in params_dict: raise Exception("{} is not in saved model".format(var.name)) if var.shape != params_dict[var.name].shape: unused_vars.append(var.name) logging.warning( "[SKIP] Shape of pretrained weight {} doesn't match.(Pretrained: {}, Actual: {})" .format(var.name, params_dict[var.name].shape, var.shape)) continue vars_to_load.append(var) logging.debug("Weight {} will be load".format(var.name)) for var_name in unused_vars: del params_dict[var_name] fluid.io.set_program_state(main_prog, params_dict) if len(vars_to_load) == 0: logging.warning( "There is no pretrain weights loaded, maybe you should check you pretrain model!" ) else: logging.info("There are {} varaibles in {} are loaded.".format( len(vars_to_load), model_dir)) def load_pretrained_weights(exe, main_prog, weights_dir, fuse_bn=False): if not osp.exists(weights_dir): raise Exception("Path {} not exists.".format(weights_dir)) if osp.exists(osp.join(weights_dir, "model.pdparams")): return load_pdparams(exe, main_prog, weights_dir) import paddle.fluid as fluid vars_to_load = list() for var in main_prog.list_vars(): if not isinstance(var, fluid.framework.Parameter): continue if not osp.exists(osp.join(weights_dir, var.name)): logging.debug("[SKIP] Pretrained weight {}/{} doesn't exist".format( weights_dir, var.name)) continue pretrained_shape = parse_param_file(osp.join(weights_dir, var.name)) actual_shape = tuple(var.shape) if pretrained_shape != actual_shape: logging.warning( "[SKIP] Shape of pretrained weight {}/{} doesn't match.(Pretrained: {}, Actual: {})" .format(weights_dir, var.name, pretrained_shape, actual_shape)) continue vars_to_load.append(var) logging.debug("Weight {} will be load".format(var.name)) params_dict = fluid.io.load_program_state( weights_dir, var_list=vars_to_load) fluid.io.set_program_state(main_prog, params_dict) if len(vars_to_load) == 0: logging.warning( "There is no pretrain weights loaded, maybe you should check you pretrain model!" ) else: logging.info("There are {} varaibles in {} are loaded.".format( len(vars_to_load), weights_dir)) if fuse_bn: fuse_bn_weights(exe, main_prog, weights_dir) def visualize(image, result, save_dir=None, weight=0.6): """ Convert segment result to color image, and save added image. Args: image: the path of origin image result: the predict result of image save_dir: the directory for saving visual image weight: the image weight of visual image, and the result weight is (1 - weight) """ label_map = result['label_map'] color_map = get_color_map_list(256) color_map = np.array(color_map).astype("uint8") # Use OpenCV LUT for color mapping c1 = cv2.LUT(label_map, color_map[:, 0]) c2 = cv2.LUT(label_map, color_map[:, 1]) c3 = cv2.LUT(label_map, color_map[:, 2]) pseudo_img = np.dstack((c1, c2, c3)) im = cv2.imread(image) vis_result = cv2.addWeighted(im, weight, pseudo_img, 1 - weight, 0) if save_dir is not None: if not os.path.exists(save_dir): os.makedirs(save_dir) image_name = os.path.split(image)[-1] out_path = os.path.join(save_dir, image_name) cv2.imwrite(out_path, vis_result) else: return vis_result def get_color_map_list(num_classes): """ Returns the color map for visualizing the segmentation mask, which can support arbitrary number of classes. Args: num_classes: Number of classes Returns: The color map """ num_classes += 1 color_map = num_classes * [0, 0, 0] for i in range(0, num_classes): j = 0 lab = i while lab: color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j)) color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j)) color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j)) j += 1 lab >>= 3 color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)] color_map = color_map[1:] return color_map