# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import math from paddle.fluid.dygraph.base import to_variable import numpy as np import paddle.fluid as fluid from paddle.fluid.dygraph.parallel import ParallelEnv from paddle.fluid.io import DataLoader from paddle.fluid.dataloader import BatchSampler from datasets import OpticDiscSeg, Cityscapes import transforms as T import models import utils.logging as logging from utils import get_environ_info from utils import ConfusionMatrix from utils import Timer, calculate_eta def parse_args(): parser = argparse.ArgumentParser(description='Model evaluation') # params of model parser.add_argument( '--model_name', dest='model_name', help="Model type for evaluation, which is one of ('UNet')", type=str, default='UNet') # params of dataset parser.add_argument( '--dataset', dest='dataset', help= "The dataset you want to evaluation, which is one of ('OpticDiscSeg', 'Cityscapes')", type=str, default='OpticDiscSeg') # params of evaluate parser.add_argument( "--input_size", dest="input_size", help="The image size for net inputs.", nargs=2, default=[512, 512], type=int) parser.add_argument( '--batch_size', dest='batch_size', help='Mini batch size', type=int, default=2) parser.add_argument( '--model_dir', dest='model_dir', help='The path of model for evaluation', type=str, default=None) return parser.parse_args() def evaluate(model, eval_dataset=None, places=None, model_dir=None, num_classes=None, batch_size=2, ignore_index=255, epoch_id=None): ckpt_path = os.path.join(model_dir, 'model') para_state_dict, opti_state_dict = fluid.load_dygraph(ckpt_path) model.set_dict(para_state_dict) model.eval() batch_sampler = BatchSampler( eval_dataset, batch_size=batch_size, shuffle=False, drop_last=False) loader = DataLoader( eval_dataset, batch_sampler=batch_sampler, places=places, return_list=True, ) total_steps = len(batch_sampler) conf_mat = ConfusionMatrix(num_classes, streaming=True) logging.info( "Start to evaluating(total_samples={}, total_steps={})...".format( len(eval_dataset), total_steps)) timer = Timer() timer.start() for step, data in enumerate(loader): images = data[0] labels = data[1].astype('int64') pred, _ = model(images, mode='eval') pred = pred.numpy() labels = labels.numpy() mask = labels != ignore_index conf_mat.calculate(pred=pred, label=labels, ignore=mask) _, iou = conf_mat.mean_iou() time_step = timer.elapsed_time() remain_step = total_steps - step - 1 logging.info( "[EVAL] Epoch={}, Step={}/{}, iou={:4f}, sec/step={:.4f} | ETA {}". format(epoch_id, step + 1, total_steps, iou, time_step, calculate_eta(remain_step, time_step))) timer.restart() category_iou, miou = conf_mat.mean_iou() category_acc, macc = conf_mat.accuracy() logging.info("[EVAL] #image={} acc={:.4f} IoU={:.4f}".format( len(eval_dataset), macc, miou)) logging.info("[EVAL] Category IoU: " + str(category_iou)) logging.info("[EVAL] Category Acc: " + str(category_acc)) logging.info("[EVAL] Kappa:{:.4f} ".format(conf_mat.kappa())) return miou, macc def main(args): env_info = get_environ_info() places = fluid.CUDAPlace(ParallelEnv().dev_id) \ if env_info['place'] == 'cuda' and fluid.is_compiled_with_cuda() \ else fluid.CPUPlace() if args.dataset.lower() == 'opticdiscseg': dataset = OpticDiscSeg elif args.dataset.lower() == 'cityscapes': dataset = Cityscapes else: raise Exception( "The --dataset set wrong. It should be one of ('OpticDiscSeg', 'Cityscapes')" ) with fluid.dygraph.guard(places): eval_transforms = T.Compose([T.Resize(args.input_size), T.Normalize()]) eval_dataset = dataset(transforms=eval_transforms, mode='eval') if args.model_name == 'UNet': model = models.UNet(num_classes=eval_dataset.num_classes) evaluate( model, eval_dataset, places=places, model_dir=args.model_dir, num_classes=eval_dataset.num_classes, batch_size=args.batch_size) if __name__ == '__main__': args = parse_args() main(args)