# coding: utf8 # copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import paddle.fluid as fluid import numpy as np import importlib from utils.config import cfg def softmax_with_loss(logit, label, ignore_mask=None, num_classes=2, weight=None): ignore_mask = fluid.layers.cast(ignore_mask, 'float32') label = fluid.layers.elementwise_min( label, fluid.layers.assign(np.array([num_classes - 1], dtype=np.int32))) logit = fluid.layers.transpose(logit, [0, 2, 3, 1]) logit = fluid.layers.reshape(logit, [-1, num_classes]) label = fluid.layers.reshape(label, [-1, 1]) label = fluid.layers.cast(label, 'int64') ignore_mask = fluid.layers.reshape(ignore_mask, [-1, 1]) if weight is None: loss, probs = fluid.layers.softmax_with_cross_entropy( logit, label, ignore_index=cfg.DATASET.IGNORE_INDEX, return_softmax=True) else: label_one_hot = fluid.layers.one_hot(input=label, depth=num_classes) if isinstance(weight, list): assert len(weight) == num_classes, "weight length must equal num of classes" weight = fluid.layers.assign(np.array([weight], dtype='float32')) elif isinstance(weight, fluid.layers.Variable): pass else: tmp = [] total_num = fluid.layers.cast(fluid.layers.shape(label)[0], 'float32') for i in range(num_classes): cls_pixel_num = fluid.layers.reduce_sum(label_one_hot[:, i]) ratio = total_num / (cls_pixel_num + 1) tmp.append(ratio) weight = fluid.layers.concat(tmp) weight = weight / fluid.layers.reduce_sum(weight) * num_classes weight = fluid.layers.reshape(weight, [1, num_classes]) weighted_label_one_hot = fluid.layers.elementwise_mul(label_one_hot, weight) probs = fluid.layers.softmax(logit) loss = fluid.layers.cross_entropy( probs, weighted_label_one_hot, soft_label=True, ignore_index=cfg.DATASET.IGNORE_INDEX) weighted_label_one_hot.stop_gradient = True loss = loss * ignore_mask avg_loss = fluid.layers.mean(loss) / fluid.layers.mean(ignore_mask) label.stop_gradient = True ignore_mask.stop_gradient = True return avg_loss # to change, how to appicate ignore index and ignore mask def dice_loss(logit, label, ignore_mask=None, epsilon=0.00001): if logit.shape[1] != 1 or label.shape[1] != 1 or ignore_mask.shape[1] != 1: raise Exception("dice loss is only applicable to one channel classfication") ignore_mask = fluid.layers.cast(ignore_mask, 'float32') logit = fluid.layers.transpose(logit, [0, 2, 3, 1]) label = fluid.layers.transpose(label, [0, 2, 3, 1]) label = fluid.layers.cast(label, 'int64') ignore_mask = fluid.layers.transpose(ignore_mask, [0, 2, 3, 1]) logit = fluid.layers.sigmoid(logit) logit = logit * ignore_mask label = label * ignore_mask reduce_dim = list(range(1, len(logit.shape))) inse = fluid.layers.reduce_sum(logit * label, dim=reduce_dim) dice_denominator = fluid.layers.reduce_sum( logit, dim=reduce_dim) + fluid.layers.reduce_sum( label, dim=reduce_dim) dice_score = 1 - inse * 2 / (dice_denominator + epsilon) label.stop_gradient = True ignore_mask.stop_gradient = True return fluid.layers.reduce_mean(dice_score) def bce_loss(logit, label, ignore_mask=None): if logit.shape[1] != 1 or label.shape[1] != 1 or ignore_mask.shape[1] != 1: raise Exception("bce loss is only applicable to binary classfication") label = fluid.layers.cast(label, 'float32') loss = fluid.layers.sigmoid_cross_entropy_with_logits( x=logit, label=label, ignore_index=cfg.DATASET.IGNORE_INDEX, normalize=True) # or False loss = fluid.layers.reduce_sum(loss) label.stop_gradient = True ignore_mask.stop_gradient = True return loss def multi_softmax_with_loss(logits, label, ignore_mask=None, num_classes=2, weight=None): if isinstance(logits, tuple): avg_loss = 0 for i, logit in enumerate(logits): logit_label = fluid.layers.resize_nearest(label, logit.shape[2:]) logit_mask = (logit_label.astype('int32') != cfg.DATASET.IGNORE_INDEX).astype('int32') loss = softmax_with_loss(logit, logit_label, logit_mask, num_classes) avg_loss += cfg.MODEL.MULTI_LOSS_WEIGHT[i] * loss else: avg_loss = softmax_with_loss(logits, label, ignore_mask, num_classes, weight=weight) return avg_loss def multi_dice_loss(logits, label, ignore_mask=None): if isinstance(logits, tuple): avg_loss = 0 for i, logit in enumerate(logits): logit_label = fluid.layers.resize_nearest(label, logit.shape[2:]) logit_mask = (logit_label.astype('int32') != cfg.DATASET.IGNORE_INDEX).astype('int32') loss = dice_loss(logit, logit_label, logit_mask) avg_loss += cfg.MODEL.MULTI_LOSS_WEIGHT[i] * loss else: avg_loss = dice_loss(logits, label, ignore_mask) return avg_loss def multi_bce_loss(logits, label, ignore_mask=None): if isinstance(logits, tuple): avg_loss = 0 for i, logit in enumerate(logits): logit_label = fluid.layers.resize_nearest(label, logit.shape[2:]) logit_mask = (logit_label.astype('int32') != cfg.DATASET.IGNORE_INDEX).astype('int32') loss = bce_loss(logit, logit_label, logit_mask) avg_loss += cfg.MODEL.MULTI_LOSS_WEIGHT[i] * loss else: avg_loss = bce_loss(logits, label, ignore_mask) return avg_loss