EVAL_CROP_SIZE: (512, 256) # (width, height), for unpadding rangescaling and stepscaling TRAIN_CROP_SIZE: (512, 256) # (width, height), for unpadding rangescaling and stepscaling AUG: AUG_METHOD: u"unpadding" # choice unpadding rangescaling and stepscaling FIX_RESIZE_SIZE: (512, 256) # (width, height), for unpadding INF_RESIZE_VALUE: 500 # for rangescaling MAX_RESIZE_VALUE: 600 # for rangescaling MIN_RESIZE_VALUE: 400 # for rangescaling MAX_SCALE_FACTOR: 2.0 # for stepscaling MIN_SCALE_FACTOR: 0.5 # for stepscaling SCALE_STEP_SIZE: 0.25 # for stepscaling MIRROR: False RICH_CROP: ENABLE: False BATCH_SIZE: 4 MEAN: [0.5, 0.5, 0.5] STD: [0.5, 0.5, 0.5] DATALOADER: BUF_SIZE: 256 NUM_WORKERS: 4 DATASET: DATA_DIR: "./dataset/tusimple_lane_detection" IMAGE_TYPE: "rgb" # choice rgb or rgba NUM_CLASSES: 2 TEST_FILE_LIST: "./dataset/tusimple_lane_detection/training/val_part.txt" TEST_TOTAL_IMAGES: 362 TRAIN_FILE_LIST: "./dataset/tusimple_lane_detection/training/train_part.txt" TRAIN_TOTAL_IMAGES: 3264 VAL_FILE_LIST: "./dataset/tusimple_lane_detection/training/val_part.txt" VAL_TOTAL_IMAGES: 362 SEPARATOR: " " IGNORE_INDEX: 255 FREEZE: MODEL_FILENAME: "__model__" PARAMS_FILENAME: "__params__" MODEL: MODEL_NAME: "lanenet" DEFAULT_NORM_TYPE: "bn" TEST: TEST_MODEL: "./saved_model/lanenet/final/" TRAIN: MODEL_SAVE_DIR: "./saved_model/lanenet/" PRETRAINED_MODEL_DIR: "./pretrained_models/VGG16_pretrained" SNAPSHOT_EPOCH: 1 SOLVER: NUM_EPOCHS: 100 LR: 0.0005 LR_POLICY: "poly" OPTIMIZER: "sgd" WEIGHT_DECAY: 0.001 CROSS_ENTROPY_WEIGHT: 'lanenet'