# coding: utf8 # copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os # GPU memory garbage collection optimization flags os.environ['FLAGS_eager_delete_tensor_gb'] = "0.0" import sys import argparse import pprint import numpy as np import paddle.fluid as fluid from utils.config import cfg from utils.timer import Timer, calculate_eta from models.model_builder import build_model from models.model_builder import ModelPhase from reader import SegDataset from metrics import ConfusionMatrix def parse_args(): parser = argparse.ArgumentParser(description='PaddleSeg model evalution') parser.add_argument( '--cfg', dest='cfg_file', help='Config file for training (and optionally testing)', default=None, type=str) parser.add_argument( '--use_gpu', dest='use_gpu', help='Use gpu or cpu', action='store_true', default=False) parser.add_argument( '--use_mpio', dest='use_mpio', help='Use multiprocess IO or not', action='store_true', default=False) parser.add_argument( 'opts', help='See utils/config.py for all options', default=None, nargs=argparse.REMAINDER) if len(sys.argv) == 1: parser.print_help() sys.exit(1) return parser.parse_args() def evaluate(cfg, ckpt_dir=None, use_gpu=False, use_mpio=False, **kwargs): np.set_printoptions(precision=5, suppress=True) startup_prog = fluid.Program() test_prog = fluid.Program() dataset = SegDataset( file_list=cfg.DATASET.VAL_FILE_LIST, mode=ModelPhase.EVAL, data_dir=cfg.DATASET.DATA_DIR) def data_generator(): #TODO: check is batch reader compatitable with Windows if use_mpio: data_gen = dataset.multiprocess_generator( num_processes=cfg.DATALOADER.NUM_WORKERS, max_queue_size=cfg.DATALOADER.BUF_SIZE) else: data_gen = dataset.generator() for b in data_gen: yield b[0], b[1], b[2] data_loader, avg_loss, pred, grts, masks = build_model( test_prog, startup_prog, phase=ModelPhase.EVAL) data_loader.set_sample_generator( data_generator, drop_last=False, batch_size=cfg.BATCH_SIZE) # Get device environment places = fluid.cuda_places() if use_gpu else fluid.cpu_places() place = places[0] dev_count = len(places) print("#Device count: {}".format(dev_count)) exe = fluid.Executor(place) exe.run(startup_prog) test_prog = test_prog.clone(for_test=True) ckpt_dir = cfg.TEST.TEST_MODEL if not ckpt_dir else ckpt_dir if not os.path.exists(ckpt_dir): raise ValueError('The TEST.TEST_MODEL {} is not found'.format(ckpt_dir)) if ckpt_dir is not None: print('load test model:', ckpt_dir) try: fluid.load(test_prog, os.path.join(ckpt_dir, 'model'), exe) except: fluid.io.load_params(exe, ckpt_dir, main_program=test_prog) # Use streaming confusion matrix to calculate mean_iou np.set_printoptions( precision=4, suppress=True, linewidth=160, floatmode="fixed") conf_mat = ConfusionMatrix(cfg.DATASET.NUM_CLASSES, streaming=True) fetch_list = [avg_loss.name, pred.name, grts.name, masks.name] num_images = 0 step = 0 all_step = cfg.DATASET.TEST_TOTAL_IMAGES // cfg.BATCH_SIZE + 1 timer = Timer() timer.start() data_loader.start() while True: try: step += 1 loss, pred, grts, masks = exe.run( test_prog, fetch_list=fetch_list, return_numpy=True) loss = np.mean(np.array(loss)) num_images += pred.shape[0] conf_mat.calculate(pred, grts, masks) _, iou = conf_mat.mean_iou() _, acc = conf_mat.accuracy() speed = 1.0 / timer.elapsed_time() print( "[EVAL]step={} loss={:.5f} acc={:.4f} IoU={:.4f} step/sec={:.2f} | ETA {}" .format(step, loss, acc, iou, speed, calculate_eta(all_step - step, speed))) timer.restart() sys.stdout.flush() except fluid.core.EOFException: break category_iou, avg_iou = conf_mat.mean_iou() category_acc, avg_acc = conf_mat.accuracy() print("[EVAL]#image={} acc={:.4f} IoU={:.4f}".format( num_images, avg_acc, avg_iou)) print("[EVAL]Category IoU:", category_iou) print("[EVAL]Category Acc:", category_acc) print("[EVAL]Kappa:{:.4f}".format(conf_mat.kappa())) return category_iou, avg_iou, category_acc, avg_acc def main(): args = parse_args() if args.cfg_file is not None: cfg.update_from_file(args.cfg_file) if args.opts: cfg.update_from_list(args.opts) cfg.check_and_infer() print(pprint.pformat(cfg)) evaluate(cfg, **args.__dict__) if __name__ == '__main__': main()