# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from .dataset import Dataset from utils.download import download_file_and_uncompress DATA_HOME = os.path.expanduser('~/.cache/paddle/dataset') URL = "http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar" class PascalVOC(Dataset): """Pascal VOC dataset `http://host.robots.ox.ac.uk/pascal/VOC/`. If you want to augment the dataset, please run the voc_augment.py in tools. Args: dataset_root: The dataset directory. mode: Which part of dataset to use.. it is one of ('train', 'val', 'test'). Default: 'train'. transforms: Transforms for image. download: Whether to download dataset if dataset_root is None. """ def __init__(self, dataset_root=None, mode='train', transforms=None, download=True): self.dataset_root = dataset_root self.transforms = transforms self.mode = mode self.file_list = list() self.num_classes = 21 if mode.lower() not in ['train', 'trainval', 'trainaug', 'val']: raise Exception( "`mode` should be one of ('train', 'trainval', 'trainaug', 'val') in PascalVOC dataset, but got {}." .format(mode)) if self.transforms is None: raise Exception("`transforms` is necessary, but it is None.") if self.dataset_root is None: if not download: raise Exception( "`dataset_root` not set and auto download disabled.") self.dataset_root = download_file_and_uncompress( url=URL, savepath=DATA_HOME, extrapath=DATA_HOME, extraname='VOCdevkit') elif not os.path.exists(self.dataset_root): raise Exception('there is not `dataset_root`: {}.'.format( self.dataset_root)) image_set_dir = os.path.join(self.dataset_root, 'VOC2012', 'ImageSets', 'Segmentation') if mode == 'train': file_list = os.path.join(image_set_dir, 'train.txt') elif mode == 'val': file_list = os.path.join(image_set_dir, 'val.txt') elif mode == 'trainval': file_list = os.path.join(image_set_dir, 'trainval.txt') elif mode == 'trainaug': file_list = os.path.join(image_set_dir, 'train.txt') file_list_aug = os.path.join(image_set_dir, 'aug.txt') if not os.path.exists(file_list_aug): raise Exception( "When `mode` is 'trainaug', Pascal Voc dataset should be augmented, " "Please make sure voc_augment.py has been properly run when using this mode." ) img_dir = os.path.join(self.dataset_root, 'VOC2012', 'JPEGImages') grt_dir = os.path.join(self.dataset_root, 'VOC2012', 'SegmentationClass') grt_dir_aug = os.path.join(self.dataset_root, 'VOC2012', 'SegmentationClassAug') with open(file_list, 'r') as f: for line in f: line = line.strip() image_path = os.path.join(img_dir, ''.join([line, '.jpg'])) grt_path = os.path.join(grt_dir, ''.join([line, '.png'])) self.file_list.append([image_path, grt_path]) if mode == 'trainaug': with open(file_list_aug, 'r') as f: for line in f: line = line.strip() image_path = os.path.join(img_dir, ''.join([line, '.jpg'])) grt_path = os.path.join(grt_dir_aug, ''.join([line, '.png'])) self.file_list.append([image_path, grt_path])