# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np from PIL import Image from .dataset import Dataset from utils.download import download_file_and_uncompress DATA_HOME = os.path.expanduser('~/.cache/paddle/dataset') URL = "http://data.csail.mit.edu/places/ADEchallenge/ADEChallengeData2016.zip" class ADE20K(Dataset): """ADE20K dataset `http://sceneparsing.csail.mit.edu/`. Args: dataset_root: The dataset directory. mode: Which part of dataset to use.. it is one of ('train', 'val'). Default: 'train'. transforms: Transforms for image. download: Whether to download dataset if `dataset_root` is None. """ def __init__(self, dataset_root=None, mode='train', transforms=None, download=True): self.dataset_root = dataset_root self.transforms = transforms self.mode = mode self.file_list = list() self.num_classes = 150 if mode.lower() not in ['train', 'val']: raise Exception( "`mode` should be one of ('train', 'val') in ADE20K dataset, but got {}." .format(mode)) if self.transforms is None: raise Exception("`transforms` is necessary, but it is None.") if self.dataset_root is None: if not download: raise Exception( "`dataset_root` not set and auto download disabled.") self.dataset_root = download_file_and_uncompress( url=URL, savepath=DATA_HOME, extrapath=DATA_HOME, extraname='ADEChallengeData2016') elif not os.path.exists(self.dataset_root): raise Exception('there is not `dataset_root`: {}.'.format( self.dataset_root)) if mode == 'train': img_dir = os.path.join(self.dataset_root, 'images/training') grt_dir = os.path.join(self.dataset_root, 'annotations/training') elif mode == 'val': img_dir = os.path.join(self.dataset_root, 'images/validation') grt_dir = os.path.join(self.dataset_root, 'annotations/validation') img_files = os.listdir(img_dir) grt_files = [i.replace('.jpg', '.png') for i in img_files] for i in range(len(img_files)): img_path = os.path.join(img_dir, img_files[i]) grt_path = os.path.join(grt_dir, grt_files[i]) self.file_list.append([img_path, grt_path]) def __getitem__(self, idx): image_path, grt_path = self.file_list[idx] if self.mode == 'test': im, im_info, _ = self.transforms(im=image_path) im = im[np.newaxis, ...] return im, im_info, image_path elif self.mode == 'val': im, im_info, _ = self.transforms(im=image_path) im = im[np.newaxis, ...] label = np.asarray(Image.open(grt_path)) label = label - 1 label = label[np.newaxis, np.newaxis, :, :] return im, im_info, label else: im, im_info, label = self.transforms(im=image_path, label=grt_path) label = label - 1 return im, label