diff --git a/docs/configs/train_group.md b/docs/configs/train_group.md index 2fc8806c457d561978379589f6e05657e62a6e86..96f2f640a2e0c63689420580aeb28c435cb863db 100644 --- a/docs/configs/train_group.md +++ b/docs/configs/train_group.md @@ -45,7 +45,7 @@ TRAIN Group存放所有和训练相关的配置 是否在多卡间同步BN的均值和方差。 Synchronized Batch Norm跨GPU批归一化策略最早在[MegDet: A Large Mini-Batch Object Detector](https://arxiv.org/abs/1711.07240) -论文中提出,在[Bag of Freebies for Training Object Detection Neural Networks](https://arxiv.org/pdf/1902.04103.pdf)论文中以Yolov3验证了这一策略的有效性,[PaddleCV/yolov3](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/yolov3)实现了这一系列策略并比Darknet框架版本在COCO17数据上mAP高5.9. +论文中提出,在[Bag of Freebies for Training Object Detection Neural Networks](https://arxiv.org/pdf/1902.04103.pdf)论文中以Yolov3验证了这一策略的有效性。 PaddleSeg基于PaddlePaddle框架的sync_batch_norm策略,可以支持通过多卡实现大batch size的分割模型训练,可以得到更高的mIoU精度。