diff --git a/configs/deeplabv3p_mobilenet-1-0_pet.yaml b/configs/deeplabv3p_mobilenet-1-0_pet.yaml new file mode 100644 index 0000000000000000000000000000000000000000..ae7ec59adc83ba87127847e295a0811d2964edb5 --- /dev/null +++ b/configs/deeplabv3p_mobilenet-1-0_pet.yaml @@ -0,0 +1,47 @@ +TRAIN_CROP_SIZE: (512, 512) # (width, height), for unpadding rangescaling and stepscaling +EVAL_CROP_SIZE: (512, 512) # (width, height), for unpadding rangescaling and stepscaling +AUG: + AUG_METHOD: "unpadding" # choice unpadding rangescaling and stepscaling + FIX_RESIZE_SIZE: (512, 512) # (width, height), for unpadding + + INF_RESIZE_VALUE: 500 # for rangescaling + MAX_RESIZE_VALUE: 600 # for rangescaling + MIN_RESIZE_VALUE: 400 # for rangescaling + + MAX_SCALE_FACTOR: 1.25 # for stepscaling + MIN_SCALE_FACTOR: 0.75 # for stepscaling + SCALE_STEP_SIZE: 0.25 # for stepscaling + MIRROR: True +BATCH_SIZE: 4 +DATASET: + DATA_DIR: "./dataset/mini_pet/" + IMAGE_TYPE: "rgb" # choice rgb or rgba + NUM_CLASSES: 3 + TEST_FILE_LIST: "./dataset/mini_pet/file_list/test_list.txt" + TRAIN_FILE_LIST: "./dataset/mini_pet/file_list/train_list.txt" + VAL_FILE_LIST: "./dataset/mini_pet/file_list/val_list.txt" + VIS_FILE_LIST: "./dataset/mini_pet/file_list/test_list.txt" + IGNORE_INDEX: 255 + SEPARATOR: " " +FREEZE: + MODEL_FILENAME: "__model__" + PARAMS_FILENAME: "__params__" +MODEL: + MODEL_NAME: "deeplabv3p" + DEFAULT_NORM_TYPE: "bn" + DEEPLAB: + BACKBONE: "mobilenet" + DEPTH_MULTIPLIER: 1.0 + ENCODER_WITH_ASPP: False + ENABLE_DECODER: False +TRAIN: + PRETRAINED_MODEL_DIR: "./pretrained_model/deeplabv3p_mobilenetv2-1-0_bn_cityscapes/" + MODEL_SAVE_DIR: "./saved_model/deeplabv3p_mobilenetv2-1-0_bn_pet/" + SNAPSHOT_EPOCH: 10 +TEST: + TEST_MODEL: "./saved_model/deeplabv3p_mobilenetv2-1-0_bn_pet/final" +SOLVER: + NUM_EPOCHS: 100 + LR: 0.005 + LR_POLICY: "poly" + OPTIMIZER: "sgd" diff --git a/configs/deeplabv3p_xception65_pet.yaml b/configs/deeplabv3p_xception65_pet.yaml new file mode 100644 index 0000000000000000000000000000000000000000..1b574497ea882c86c7e5785e16de976e5b33a50f --- /dev/null +++ b/configs/deeplabv3p_xception65_pet.yaml @@ -0,0 +1,44 @@ +TRAIN_CROP_SIZE: (512, 512) # (width, height), for unpadding rangescaling and stepscaling +EVAL_CROP_SIZE: (512, 512) # (width, height), for unpadding rangescaling and stepscaling +AUG: + AUG_METHOD: "unpadding" # choice unpadding rangescaling and stepscaling + FIX_RESIZE_SIZE: (512, 512) # (width, height), for unpadding + + INF_RESIZE_VALUE: 500 # for rangescaling + MAX_RESIZE_VALUE: 600 # for rangescaling + MIN_RESIZE_VALUE: 400 # for rangescaling + + MAX_SCALE_FACTOR: 1.25 # for stepscaling + MIN_SCALE_FACTOR: 0.75 # for stepscaling + SCALE_STEP_SIZE: 0.25 # for stepscaling + MIRROR: True +BATCH_SIZE: 4 +DATASET: + DATA_DIR: "./dataset/mini_pet/" + IMAGE_TYPE: "rgb" # choice rgb or rgba + NUM_CLASSES: 3 + TEST_FILE_LIST: "./dataset/mini_pet/file_list/test_list.txt" + TRAIN_FILE_LIST: "./dataset/mini_pet/file_list/train_list.txt" + VAL_FILE_LIST: "./dataset/mini_pet/file_list/val_list.txt" + VIS_FILE_LIST: "./dataset/mini_pet/file_list/test_list.txt" + IGNORE_INDEX: 255 + SEPARATOR: " " +FREEZE: + MODEL_FILENAME: "__model__" + PARAMS_FILENAME: "__params__" +MODEL: + MODEL_NAME: "deeplabv3p" + DEFAULT_NORM_TYPE: "bn" + DEEPLAB: + BACKBONE: "xception_65" +TRAIN: + PRETRAINED_MODEL_DIR: "./pretrained_model/deeplabv3p_xception65_bn_coco/" + MODEL_SAVE_DIR: "./saved_model/deeplabv3p_xception65_bn_pet/" + SNAPSHOT_EPOCH: 10 +TEST: + TEST_MODEL: "./saved_model/deeplabv3p_xception65_bn_pet/final" +SOLVER: + NUM_EPOCHS: 100 + LR: 0.005 + LR_POLICY: "poly" + OPTIMIZER: "sgd" diff --git a/configs/icnet_pet.yaml b/configs/icnet_pet.yaml new file mode 100644 index 0000000000000000000000000000000000000000..0398d131ca12aea7902ec7be6542650377201c25 --- /dev/null +++ b/configs/icnet_pet.yaml @@ -0,0 +1,45 @@ +TRAIN_CROP_SIZE: (512, 512) # (width, height), for unpadding rangescaling and stepscaling +EVAL_CROP_SIZE: (512, 512) # (width, height), for unpadding rangescaling and stepscaling +AUG: + AUG_METHOD: "unpadding" # choice unpadding rangescaling and stepscaling + FIX_RESIZE_SIZE: (512, 512) # (width, height), for unpadding + + INF_RESIZE_VALUE: 500 # for rangescaling + MAX_RESIZE_VALUE: 600 # for rangescaling + MIN_RESIZE_VALUE: 400 # for rangescaling + + MAX_SCALE_FACTOR: 1.25 # for stepscaling + MIN_SCALE_FACTOR: 0.75 # for stepscaling + SCALE_STEP_SIZE: 0.25 # for stepscaling + MIRROR: True +BATCH_SIZE: 4 +DATASET: + DATA_DIR: "./dataset/mini_pet/" + IMAGE_TYPE: "rgb" # choice rgb or rgba + NUM_CLASSES: 3 + TEST_FILE_LIST: "./dataset/mini_pet/file_list/test_list.txt" + TRAIN_FILE_LIST: "./dataset/mini_pet/file_list/train_list.txt" + VAL_FILE_LIST: "./dataset/mini_pet/file_list/val_list.txt" + VIS_FILE_LIST: "./dataset/mini_pet/file_list/test_list.txt" + IGNORE_INDEX: 255 + SEPARATOR: " " +FREEZE: + MODEL_FILENAME: "__model__" + PARAMS_FILENAME: "__params__" +MODEL: + MODEL_NAME: "icnet" + DEFAULT_NORM_TYPE: "bn" + MULTI_LOSS_WEIGHT: "[1.0, 0.4, 0.16]" + ICNET: + DEPTH_MULTIPLIER: 0.5 +TRAIN: + PRETRAINED_MODEL_DIR: "./pretrained_model/icnet_bn_cityscapes/" + MODEL_SAVE_DIR: "./saved_model/icnet_pet/" + SNAPSHOT_EPOCH: 10 +TEST: + TEST_MODEL: "./saved_model/icnet_pet/final" +SOLVER: + NUM_EPOCHS: 100 + LR: 0.005 + LR_POLICY: "poly" + OPTIMIZER: "sgd"