提交 e053e5a7 编写于 作者: C chenguowei01

update humanseg_postprocess

上级 b47db6b5
...@@ -14,13 +14,6 @@ ...@@ -14,13 +14,6 @@
# limitations under the License. # limitations under the License.
import numpy as np import numpy as np
import cv2
import os
def get_round(data):
round = 0.5 if data >= 0 else -0.5
return (int)(data + round)
def human_seg_tracking(pre_gray, cur_gray, prev_cfd, dl_weights, disflow): def human_seg_tracking(pre_gray, cur_gray, prev_cfd, dl_weights, disflow):
...@@ -39,28 +32,32 @@ def human_seg_tracking(pre_gray, cur_gray, prev_cfd, dl_weights, disflow): ...@@ -39,28 +32,32 @@ def human_seg_tracking(pre_gray, cur_gray, prev_cfd, dl_weights, disflow):
h, w = pre_gray.shape[:2] h, w = pre_gray.shape[:2]
track_cfd = np.zeros_like(prev_cfd) track_cfd = np.zeros_like(prev_cfd)
is_track = np.zeros_like(pre_gray) is_track = np.zeros_like(pre_gray)
# 这两个的处理的作用?
flow_fw = disflow.calc(pre_gray, cur_gray, None) flow_fw = disflow.calc(pre_gray, cur_gray, None)
flow_bw = disflow.calc(cur_gray, pre_gray, None) flow_bw = disflow.calc(cur_gray, pre_gray, None)
for r in range(h): # cur_position =
for c in range(w): flow_fw = np.round(flow_fw).astype(np.int)
fxy_fw = flow_fw[r, c] flow_bw = np.round(flow_bw).astype(np.int)
dx_fw = get_round(fxy_fw[0]) y_list = np.array(range(h))
cur_x = dx_fw + c x_list = np.array(range(w))
dy_fw = get_round(fxy_fw[1]) yv, xv = np.meshgrid(y_list, x_list)
cur_y = dy_fw + r yv, xv = yv.T, xv.T
if cur_x < 0 or cur_x >= w or cur_y < 0 or cur_y >= h: cur_x = xv + flow_fw[:, :, 0]
continue cur_y = yv + flow_fw[:, :, 1]
fxy_bw = flow_bw[cur_y, cur_x]
dx_bw = get_round(fxy_bw[0]) # 超出边界不跟踪
dy_bw = get_round(fxy_bw[1]) not_track = (cur_x < 0) + (cur_x >= w) + (cur_y < 0) + (cur_y >= h)
if ((dy_fw + dy_bw) * (dy_fw + dy_bw) + flow_bw[~not_track] = flow_bw[cur_y[~not_track], cur_x[~not_track]]
(dx_fw + dx_bw) * (dx_fw + dx_bw)) >= check_thres: not_track += (np.square(flow_fw[:, :, 0] + flow_bw[:, :, 0]) +
continue np.square(flow_fw[:, :, 1] + flow_bw[:, :, 1])) >= check_thres
if abs(dy_fw) <= 0 and abs(dx_fw) <= 0 and abs(dy_bw) <= 0 and abs( track_cfd[cur_y[~not_track], cur_x[~not_track]] = prev_cfd[~not_track]
dx_bw) <= 0:
dl_weights[cur_y, cur_x] = 0.05 is_track[cur_y[~not_track], cur_x[~not_track]] = 1
is_track[cur_y, cur_x] = 1
track_cfd[cur_y, cur_x] = prev_cfd[r, c] not_flow = np.all(
np.abs(flow_fw) == 0, axis=-1) * np.all(
np.abs(flow_bw) == 0, axis=-1)
dl_weights[cur_y[not_flow], cur_x[not_flow]] = 0.05
return track_cfd, is_track, dl_weights return track_cfd, is_track, dl_weights
...@@ -75,24 +72,27 @@ def human_seg_track_fuse(track_cfd, dl_cfd, dl_weights, is_track): ...@@ -75,24 +72,27 @@ def human_seg_track_fuse(track_cfd, dl_cfd, dl_weights, is_track):
cur_cfd: 光流跟踪图和人像分割结果融合图 cur_cfd: 光流跟踪图和人像分割结果融合图
""" """
fusion_cfd = dl_cfd.copy() fusion_cfd = dl_cfd.copy()
idxs = np.where(is_track > 0) is_track = is_track.astype(np.bool)
for i in range(len(idxs[0])): fusion_cfd[is_track] = dl_weights[is_track] * dl_cfd[is_track] + (
x, y = idxs[0][i], idxs[1][i] 1 - dl_weights[is_track]) * track_cfd[is_track]
dl_score = dl_cfd[x, y] # 确定区域
track_score = track_cfd[x, y] index_certain = ((dl_cfd > 0.9) + (dl_cfd < 0.1)) * is_track
fusion_cfd[x, y] = dl_weights[x, y] * dl_score + ( index_less01 = (dl_weights < 0.1) * index_certain
1 - dl_weights[x, y]) * track_score fusion_cfd[index_less01] = 0.3 * dl_cfd[index_less01] + 0.7 * track_cfd[
if dl_score > 0.9 or dl_score < 0.1: index_less01]
if dl_weights[x, y] < 0.1: index_larger09 = (dl_weights >= 0.1) * index_certain
fusion_cfd[x, y] = 0.3 * dl_score + 0.7 * track_score fusion_cfd[index_larger09] = 0.4 * dl_cfd[index_larger09] + 0.6 * track_cfd[
else: index_larger09]
fusion_cfd[x, y] = 0.4 * dl_score + 0.6 * track_score
else:
fusion_cfd[x, y] = dl_weights[x, y] * dl_score + (
1 - dl_weights[x, y]) * track_score
return fusion_cfd return fusion_cfd
def threshold_mask(img, thresh_bg, thresh_fg):
dst = (img / 255.0 - thresh_bg) / (thresh_fg - thresh_bg)
dst[np.where(dst > 1)] = 1
dst[np.where(dst < 0)] = 0
return dst.astype(np.float32)
def postprocess(cur_gray, scoremap, prev_gray, pre_cfd, disflow, is_init): def postprocess(cur_gray, scoremap, prev_gray, pre_cfd, disflow, is_init):
"""光流优化 """光流优化
Args: Args:
...@@ -105,8 +105,6 @@ def postprocess(cur_gray, scoremap, prev_gray, pre_cfd, disflow, is_init): ...@@ -105,8 +105,6 @@ def postprocess(cur_gray, scoremap, prev_gray, pre_cfd, disflow, is_init):
Returns: Returns:
fusion_cfd : 光流追踪图和预测结果融合图 fusion_cfd : 光流追踪图和预测结果融合图
""" """
height, width = scoremap.shape[0], scoremap.shape[1]
disflow = cv2.DISOpticalFlow_create(cv2.DISOPTICAL_FLOW_PRESET_ULTRAFAST)
h, w = scoremap.shape h, w = scoremap.shape
cur_cfd = scoremap.copy() cur_cfd = scoremap.copy()
...@@ -120,18 +118,9 @@ def postprocess(cur_gray, scoremap, prev_gray, pre_cfd, disflow, is_init): ...@@ -120,18 +118,9 @@ def postprocess(cur_gray, scoremap, prev_gray, pre_cfd, disflow, is_init):
disflow.setFinestScale(3) disflow.setFinestScale(3)
fusion_cfd = cur_cfd fusion_cfd = cur_cfd
else: else:
weights = np.ones((w, h), np.float32) * 0.3 weights = np.ones((h, w), np.float32) * 0.3
track_cfd, is_track, weights = human_seg_tracking( track_cfd, is_track, weights = human_seg_tracking(
prev_gray, cur_gray, pre_cfd, weights, disflow) prev_gray, cur_gray, pre_cfd, weights, disflow)
fusion_cfd = human_seg_track_fuse(track_cfd, cur_cfd, weights, is_track) fusion_cfd = human_seg_track_fuse(track_cfd, cur_cfd, weights, is_track)
fusion_cfd = cv2.GaussianBlur(fusion_cfd, (3, 3), 0)
return fusion_cfd return fusion_cfd
def threshold_mask(img, thresh_bg, thresh_fg):
dst = (img / 255.0 - thresh_bg) / (thresh_fg - thresh_bg)
dst[np.where(dst > 1)] = 1
dst[np.where(dst < 0)] = 0
return dst.astype(np.float32)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册