未验证 提交 d0db5532 编写于 作者: M michaelowenliu 提交者: GitHub

Merge pull request #404 from wuyefeilin/dygraph

update xception_deeplab and mobilenetv3 to 2.0 beta
_base_: '../_base_/cityscapes.yml'
model:
type: DeepLabV3
backbone:
type: MobileNetV3_small_x1_0
pretrained: Null
num_classes: 19
pretrained: Null
backbone_indices: [0, 3]
optimizer:
weight_decay: 0.00004
_base_: '../_base_/cityscapes.yml'
model:
type: DeepLabV3
backbone:
type: Xception65_deeplab
pretrained: Null
num_classes: 19
pretrained: Null
backbone_indices: [0, 1]
optimizer:
weight_decay: 0.00004
...@@ -21,13 +21,14 @@ import os ...@@ -21,13 +21,14 @@ import os
import numpy as np import numpy as np
import paddle import paddle
import paddle.fluid as fluid import paddle.nn as nn
from paddle.fluid.param_attr import ParamAttr import paddle.nn.functional as F
from paddle.fluid.layer_helper import LayerHelper from paddle.nn import Conv2d, AdaptiveAvgPool2d
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear, Dropout
from paddle.nn import SyncBatchNorm as BatchNorm from paddle.nn import SyncBatchNorm as BatchNorm
from paddle.regularizer import L2Decay
from paddle import ParamAttr
from paddleseg.models.common import layer_libs from paddleseg.models.common import layer_libs, activation
from paddleseg.cvlibs import manager from paddleseg.cvlibs import manager
from paddleseg.utils import utils from paddleseg.utils import utils
...@@ -71,9 +72,9 @@ def get_padding_same(kernel_size, dilation_rate): ...@@ -71,9 +72,9 @@ def get_padding_same(kernel_size, dilation_rate):
return padding_same return padding_same
class MobileNetV3(fluid.dygraph.Layer): class MobileNetV3(nn.Layer):
def __init__(self, def __init__(self,
backbone_pretrained=None, pretrained=None,
scale=1.0, scale=1.0,
model_name="small", model_name="small",
class_dim=1000, class_dim=1000,
...@@ -103,6 +104,9 @@ class MobileNetV3(fluid.dygraph.Layer): ...@@ -103,6 +104,9 @@ class MobileNetV3(fluid.dygraph.Layer):
1], # output 3 -> out_index=14 1], # output 3 -> out_index=14
] ]
self.out_indices = [2, 5, 11, 14] self.out_indices = [2, 5, 11, 14]
self.feat_channels = [
make_divisible(i * scale) for i in [24, 40, 112, 160]
]
self.cls_ch_squeeze = 960 self.cls_ch_squeeze = 960
self.cls_ch_expand = 1280 self.cls_ch_expand = 1280
...@@ -122,6 +126,9 @@ class MobileNetV3(fluid.dygraph.Layer): ...@@ -122,6 +126,9 @@ class MobileNetV3(fluid.dygraph.Layer):
[5, 576, 96, True, "hard_swish", 1], # output 4 -> out_index=10 [5, 576, 96, True, "hard_swish", 1], # output 4 -> out_index=10
] ]
self.out_indices = [0, 3, 7, 10] self.out_indices = [0, 3, 7, 10]
self.feat_channels = [
make_divisible(i * scale) for i in [16, 24, 48, 96]
]
self.cls_ch_squeeze = 576 self.cls_ch_squeeze = 576
self.cls_ch_expand = 1280 self.cls_ch_expand = 1280
...@@ -169,37 +176,33 @@ class MobileNetV3(fluid.dygraph.Layer): ...@@ -169,37 +176,33 @@ class MobileNetV3(fluid.dygraph.Layer):
sublayer=self.block_list[-1], name="conv" + str(i + 2)) sublayer=self.block_list[-1], name="conv" + str(i + 2))
inplanes = make_divisible(scale * c) inplanes = make_divisible(scale * c)
self.last_second_conv = ConvBNLayer( # self.last_second_conv = ConvBNLayer(
in_c=inplanes, # in_c=inplanes,
out_c=make_divisible(scale * self.cls_ch_squeeze), # out_c=make_divisible(scale * self.cls_ch_squeeze),
filter_size=1, # filter_size=1,
stride=1, # stride=1,
padding=0, # padding=0,
num_groups=1, # num_groups=1,
if_act=True, # if_act=True,
act="hard_swish", # act="hard_swish",
name="conv_last") # name="conv_last")
self.pool = Pool2D( # self.pool = Pool2D(
pool_type="avg", global_pooling=True, use_cudnn=False) # pool_type="avg", global_pooling=True, use_cudnn=False)
self.last_conv = Conv2D( # self.last_conv = Conv2d(
num_channels=make_divisible(scale * self.cls_ch_squeeze), # in_channels=make_divisible(scale * self.cls_ch_squeeze),
num_filters=self.cls_ch_expand, # out_channels=self.cls_ch_expand,
filter_size=1, # kernel_size=1,
stride=1, # stride=1,
padding=0, # padding=0,
act=None, # bias_attr=False)
param_attr=ParamAttr(name="last_1x1_conv_weights"),
bias_attr=False) # self.out = Linear(
# input_dim=self.cls_ch_expand,
self.out = Linear( # output_dim=class_dim)
input_dim=self.cls_ch_expand,
output_dim=class_dim, utils.load_pretrained_model(self, pretrained)
param_attr=ParamAttr("fc_weights"),
bias_attr=ParamAttr(name="fc_offset"))
self.init_weight(backbone_pretrained)
def modify_bottle_params(self, output_stride=None): def modify_bottle_params(self, output_stride=None):
...@@ -216,7 +219,7 @@ class MobileNetV3(fluid.dygraph.Layer): ...@@ -216,7 +219,7 @@ class MobileNetV3(fluid.dygraph.Layer):
self.dilation_cfg[i] = rate self.dilation_cfg[i] = rate
def forward(self, inputs, label=None, dropout_prob=0.2): def forward(self, inputs, label=None):
x = self.conv1(inputs) x = self.conv1(inputs)
# A feature list saves each downsampling feature. # A feature list saves each downsampling feature.
feat_list = [] feat_list = []
...@@ -225,31 +228,18 @@ class MobileNetV3(fluid.dygraph.Layer): ...@@ -225,31 +228,18 @@ class MobileNetV3(fluid.dygraph.Layer):
if i in self.out_indices: if i in self.out_indices:
feat_list.append(x) feat_list.append(x)
#print("block {}:".format(i),x.shape, self.dilation_cfg[i]) #print("block {}:".format(i),x.shape, self.dilation_cfg[i])
x = self.last_second_conv(x) # x = self.last_second_conv(x)
x = self.pool(x) # x = self.pool(x)
x = self.last_conv(x) # x = self.last_conv(x)
x = fluid.layers.hard_swish(x) # x = F.hard_swish(x)
x = fluid.layers.dropout(x=x, dropout_prob=dropout_prob) # x = F.dropout(x=x, dropout_prob=dropout_prob)
x = fluid.layers.reshape(x, shape=[x.shape[0], x.shape[1]]) # x = paddle.reshape(x, shape=[x.shape[0], x.shape[1]])
x = self.out(x) # x = self.out(x)
return x, feat_list return feat_list
def init_weight(self, pretrained_model=None):
"""
Initialize the parameters of model parts.
Args:
pretrained_model ([str], optional): the path of pretrained model. Defaults to None.
"""
if pretrained_model is not None:
if os.path.exists(pretrained_model):
utils.load_pretrained_model(self, pretrained_model)
else:
raise Exception('Pretrained model is not found: {}'.format(
pretrained_model))
class ConvBNLayer(fluid.dygraph.Layer): class ConvBNLayer(nn.Layer):
def __init__(self, def __init__(self,
in_c, in_c,
out_c, out_c,
...@@ -266,46 +256,31 @@ class ConvBNLayer(fluid.dygraph.Layer): ...@@ -266,46 +256,31 @@ class ConvBNLayer(fluid.dygraph.Layer):
self.if_act = if_act self.if_act = if_act
self.act = act self.act = act
self.conv = fluid.dygraph.Conv2D( self.conv = Conv2d(
num_channels=in_c, in_channels=in_c,
num_filters=out_c, out_channels=out_c,
filter_size=filter_size, kernel_size=filter_size,
stride=stride, stride=stride,
padding=padding, padding=padding,
dilation=dilation, dilation=dilation,
groups=num_groups, groups=num_groups,
param_attr=ParamAttr(name=name + "_weights"), bias_attr=False)
bias_attr=False,
use_cudnn=use_cudnn,
act=None)
self.bn = BatchNorm( self.bn = BatchNorm(
num_features=out_c, num_features=out_c,
weight_attr=ParamAttr( weight_attr=ParamAttr(regularizer=L2Decay(0.0)),
name=name + "_bn_scale", bias_attr=ParamAttr(regularizer=L2Decay(0.0)))
regularizer=fluid.regularizer.L2DecayRegularizer(
regularization_coeff=0.0)),
bias_attr=ParamAttr(
name=name + "_bn_offset",
regularizer=fluid.regularizer.L2DecayRegularizer(
regularization_coeff=0.0)))
self._act_op = layer_utils.Activation(act=None) self._act_op = activation.Activation(act=None)
def forward(self, x): def forward(self, x):
x = self.conv(x) x = self.conv(x)
x = self.bn(x) x = self.bn(x)
if self.if_act: if self.if_act:
if self.act == "relu": x = self._act_op(x)
x = fluid.layers.relu(x)
elif self.act == "hard_swish":
x = fluid.layers.hard_swish(x)
else:
print("The activation function is selected incorrectly.")
exit()
return x return x
class ResidualUnit(fluid.dygraph.Layer): class ResidualUnit(nn.Layer):
def __init__(self, def __init__(self,
in_c, in_c,
mid_c, mid_c,
...@@ -363,40 +338,34 @@ class ResidualUnit(fluid.dygraph.Layer): ...@@ -363,40 +338,34 @@ class ResidualUnit(fluid.dygraph.Layer):
x = self.mid_se(x) x = self.mid_se(x)
x = self.linear_conv(x) x = self.linear_conv(x)
if self.if_shortcut: if self.if_shortcut:
x = fluid.layers.elementwise_add(inputs, x) x = inputs + x
return x return x
class SEModule(fluid.dygraph.Layer): class SEModule(nn.Layer):
def __init__(self, channel, reduction=4, name=""): def __init__(self, channel, reduction=4, name=""):
super(SEModule, self).__init__() super(SEModule, self).__init__()
self.avg_pool = fluid.dygraph.Pool2D( self.avg_pool = AdaptiveAvgPool2d(1)
pool_type="avg", global_pooling=True, use_cudnn=False) self.conv1 = Conv2d(
self.conv1 = fluid.dygraph.Conv2D( in_channels=channel,
num_channels=channel, out_channels=channel // reduction,
num_filters=channel // reduction, kernel_size=1,
filter_size=1,
stride=1, stride=1,
padding=0, padding=0)
act="relu", self.conv2 = Conv2d(
param_attr=ParamAttr(name=name + "_1_weights"), in_channels=channel // reduction,
bias_attr=ParamAttr(name=name + "_1_offset")) out_channels=channel,
self.conv2 = fluid.dygraph.Conv2D( kernel_size=1,
num_channels=channel // reduction,
num_filters=channel,
filter_size=1,
stride=1, stride=1,
padding=0, padding=0)
act=None,
param_attr=ParamAttr(name + "_2_weights"),
bias_attr=ParamAttr(name=name + "_2_offset"))
def forward(self, inputs): def forward(self, inputs):
outputs = self.avg_pool(inputs) outputs = self.avg_pool(inputs)
outputs = self.conv1(outputs) outputs = self.conv1(outputs)
outputs = F.relu(outputs)
outputs = self.conv2(outputs) outputs = self.conv2(outputs)
outputs = fluid.layers.hard_sigmoid(outputs) outputs = F.hard_sigmoid(outputs)
return fluid.layers.elementwise_mul(x=inputs, y=outputs, axis=0) return paddle.multiply(x=inputs, y=outputs, axis=0)
def MobileNetV3_small_x0_35(**kwargs): def MobileNetV3_small_x0_35(**kwargs):
......
...@@ -15,13 +15,12 @@ ...@@ -15,13 +15,12 @@
import os import os
import paddle import paddle
import paddle.fluid as fluid import paddle.nn as nn
from paddle.fluid.param_attr import ParamAttr import paddle.nn.functional as F
from paddle.fluid.layer_helper import LayerHelper from paddle.nn import Conv2d, Linear, Dropout
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear, Dropout
from paddle.nn import SyncBatchNorm as BatchNorm from paddle.nn import SyncBatchNorm as BatchNorm
from paddleseg.models.common import layer_libs from paddleseg.models.common import layer_libs, activation
from paddleseg.cvlibs import manager from paddleseg.cvlibs import manager
from paddleseg.utils import utils from paddleseg.utils import utils
...@@ -78,7 +77,7 @@ def gen_bottleneck_params(backbone='xception_65'): ...@@ -78,7 +77,7 @@ def gen_bottleneck_params(backbone='xception_65'):
return bottleneck_params return bottleneck_params
class ConvBNLayer(fluid.dygraph.Layer): class ConvBNLayer(nn.Layer):
def __init__(self, def __init__(self,
input_channels, input_channels,
output_channels, output_channels,
...@@ -89,29 +88,24 @@ class ConvBNLayer(fluid.dygraph.Layer): ...@@ -89,29 +88,24 @@ class ConvBNLayer(fluid.dygraph.Layer):
name=None): name=None):
super(ConvBNLayer, self).__init__() super(ConvBNLayer, self).__init__()
self._conv = Conv2D( self._conv = Conv2d(
num_channels=input_channels, in_channels=input_channels,
num_filters=output_channels, out_channels=output_channels,
filter_size=filter_size, kernel_size=filter_size,
stride=stride, stride=stride,
padding=padding, padding=padding,
param_attr=ParamAttr(name=name + "/weights"),
bias_attr=False) bias_attr=False)
self._bn = BatchNorm( self._bn = BatchNorm(
num_features=output_channels, num_features=output_channels, epsilon=1e-3, momentum=0.99)
epsilon=1e-3,
momentum=0.99,
weight_attr=ParamAttr(name=name + "/BatchNorm/gamma"),
bias_attr=ParamAttr(name=name + "/BatchNorm/beta"))
self._act_op = layer_utils.Activation(act=act) self._act_op = activation.Activation(act=act)
def forward(self, inputs): def forward(self, inputs):
return self._act_op(self._bn(self._conv(inputs))) return self._act_op(self._bn(self._conv(inputs)))
class Seperate_Conv(fluid.dygraph.Layer): class Seperate_Conv(nn.Layer):
def __init__(self, def __init__(self,
input_channels, input_channels,
output_channels, output_channels,
...@@ -122,42 +116,30 @@ class Seperate_Conv(fluid.dygraph.Layer): ...@@ -122,42 +116,30 @@ class Seperate_Conv(fluid.dygraph.Layer):
name=None): name=None):
super(Seperate_Conv, self).__init__() super(Seperate_Conv, self).__init__()
self._conv1 = Conv2D( self._conv1 = Conv2d(
num_channels=input_channels, in_channels=input_channels,
num_filters=input_channels, out_channels=input_channels,
filter_size=filter, kernel_size=filter,
stride=stride, stride=stride,
groups=input_channels, groups=input_channels,
padding=(filter) // 2 * dilation, padding=(filter) // 2 * dilation,
dilation=dilation, dilation=dilation,
param_attr=ParamAttr(name=name + "/depthwise/weights"),
bias_attr=False) bias_attr=False)
self._bn1 = BatchNorm( self._bn1 = BatchNorm(input_channels, epsilon=1e-3, momentum=0.99)
input_channels,
epsilon=1e-3,
momentum=0.99,
weight_attr=ParamAttr(name=name + "/depthwise/BatchNorm/gamma"),
bias_attr=ParamAttr(name=name + "/depthwise/BatchNorm/beta"))
self._act_op1 = layer_utils.Activation(act=act) self._act_op1 = activation.Activation(act=act)
self._conv2 = Conv2D( self._conv2 = Conv2d(
input_channels, input_channels,
output_channels, output_channels,
1, 1,
stride=1, stride=1,
groups=1, groups=1,
padding=0, padding=0,
param_attr=ParamAttr(name=name + "/pointwise/weights"),
bias_attr=False) bias_attr=False)
self._bn2 = BatchNorm( self._bn2 = BatchNorm(output_channels, epsilon=1e-3, momentum=0.99)
output_channels,
epsilon=1e-3,
momentum=0.99,
weight_attr=ParamAttr(name=name + "/pointwise/BatchNorm/gamma"),
bias_attr=ParamAttr(name=name + "/pointwise/BatchNorm/beta"))
self._act_op2 = layer_utils.Activation(act=act) self._act_op2 = activation.Activation(act=act)
def forward(self, inputs): def forward(self, inputs):
x = self._conv1(inputs) x = self._conv1(inputs)
...@@ -169,7 +151,7 @@ class Seperate_Conv(fluid.dygraph.Layer): ...@@ -169,7 +151,7 @@ class Seperate_Conv(fluid.dygraph.Layer):
return x return x
class Xception_Block(fluid.dygraph.Layer): class Xception_Block(nn.Layer):
def __init__(self, def __init__(self,
input_channels, input_channels,
output_channels, output_channels,
...@@ -248,13 +230,12 @@ class Xception_Block(fluid.dygraph.Layer): ...@@ -248,13 +230,12 @@ class Xception_Block(fluid.dygraph.Layer):
name=name + "/shortcut") name=name + "/shortcut")
def forward(self, inputs): def forward(self, inputs):
layer_helper = LayerHelper(self.full_name(), act='relu')
if not self.activation_fn_in_separable_conv: if not self.activation_fn_in_separable_conv:
x = layer_helper.append_activation(inputs) x = F.relu(inputs)
x = self._conv1(x) x = self._conv1(x)
x = layer_helper.append_activation(x) x = F.relu(x)
x = self._conv2(x) x = self._conv2(x)
x = layer_helper.append_activation(x) x = F.relu(x)
x = self._conv3(x) x = self._conv3(x)
else: else:
x = self._conv1(inputs) x = self._conv1(inputs)
...@@ -266,16 +247,16 @@ class Xception_Block(fluid.dygraph.Layer): ...@@ -266,16 +247,16 @@ class Xception_Block(fluid.dygraph.Layer):
skip = self._short(inputs) skip = self._short(inputs)
else: else:
skip = inputs skip = inputs
return fluid.layers.elementwise_add(x, skip) return x + skip
class XceptionDeeplab(fluid.dygraph.Layer): class XceptionDeeplab(nn.Layer):
#def __init__(self, backbone, class_dim=1000): #def __init__(self, backbone, class_dim=1000):
# add output_stride # add output_stride
def __init__(self, def __init__(self,
backbone, backbone,
backbone_pretrained=None, pretrained=None,
output_stride=16, output_stride=16,
class_dim=1000): class_dim=1000):
...@@ -283,6 +264,7 @@ class XceptionDeeplab(fluid.dygraph.Layer): ...@@ -283,6 +264,7 @@ class XceptionDeeplab(fluid.dygraph.Layer):
bottleneck_params = gen_bottleneck_params(backbone) bottleneck_params = gen_bottleneck_params(backbone)
self.backbone = backbone self.backbone = backbone
self.feat_channels = [128, 2048]
self._conv1 = ConvBNLayer( self._conv1 = ConvBNLayer(
3, 3,
...@@ -388,19 +370,8 @@ class XceptionDeeplab(fluid.dygraph.Layer): ...@@ -388,19 +370,8 @@ class XceptionDeeplab(fluid.dygraph.Layer):
has_skip=False, has_skip=False,
activation_fn_in_separable_conv=True, activation_fn_in_separable_conv=True,
name=self.backbone + "/exit_flow/block2") name=self.backbone + "/exit_flow/block2")
s = s * stride
self.stride = s utils.load_pretrained_model(self, pretrained)
self._drop = Dropout(p=0.5)
self._pool = Pool2D(pool_type="avg", global_pooling=True)
self._fc = Linear(
self.chns[1][-1],
class_dim,
param_attr=ParamAttr(name="fc_weights"),
bias_attr=ParamAttr(name="fc_bias"))
self.init_weight(backbone_pretrained)
def forward(self, inputs): def forward(self, inputs):
x = self._conv1(inputs) x = self._conv1(inputs)
...@@ -415,27 +386,10 @@ class XceptionDeeplab(fluid.dygraph.Layer): ...@@ -415,27 +386,10 @@ class XceptionDeeplab(fluid.dygraph.Layer):
x = self._exit_flow_1(x) x = self._exit_flow_1(x)
x = self._exit_flow_2(x) x = self._exit_flow_2(x)
feat_list.append(x) feat_list.append(x)
return feat_list
x = self._drop(x)
x = self._pool(x)
x = fluid.layers.squeeze(x, axes=[2, 3])
x = self._fc(x)
return x, feat_list
def init_weight(self, pretrained_model=None):
"""
Initialize the parameters of model parts.
Args:
pretrained_model ([str], optional): the path of pretrained model. Defaults to None.
"""
if pretrained_model is not None:
if os.path.exists(pretrained_model):
utils.load_pretrained_model(self, pretrained_model)
else:
raise Exception('Pretrained model is not found: {}'.format(
pretrained_model))
@manager.BACKBONES.add_component
def Xception41_deeplab(**args): def Xception41_deeplab(**args):
model = XceptionDeeplab('xception_41', **args) model = XceptionDeeplab('xception_41', **args)
return model return model
...@@ -447,6 +401,7 @@ def Xception65_deeplab(**args): ...@@ -447,6 +401,7 @@ def Xception65_deeplab(**args):
return model return model
@manager.BACKBONES.add_component
def Xception71_deeplab(**args): def Xception71_deeplab(**args):
model = XceptionDeeplab("xception_71", **args) model = XceptionDeeplab("xception_71", **args)
return model return model
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册