提交 cfe22ab3 编写于 作者: R root

Merge branch 'develop' of https://github.com/PaddlePaddle/PaddleSeg into dygraph

...@@ -89,12 +89,12 @@ pip install -r requirements.txt ...@@ -89,12 +89,12 @@ pip install -r requirements.txt
* [数据和配置校验](./docs/check.md) * [数据和配置校验](./docs/check.md)
* [分割模型介绍](./docs/models.md) * [分割模型介绍](./docs/models.md)
* [预训练模型下载](./docs/model_zoo.md) * [预训练模型下载](./docs/model_zoo.md)
* [DeepLabv3+模型使用教程](./turtorial/finetune_deeplabv3plus.md) * [DeepLabv3+模型使用教程](./tutorial/finetune_deeplabv3plus.md)
* [U-Net模型使用教程](./turtorial/finetune_unet.md) * [U-Net模型使用教程](./tutorial/finetune_unet.md)
* [ICNet模型使用教程](./turtorial/finetune_icnet.md) * [ICNet模型使用教程](./tutorial/finetune_icnet.md)
* [PSPNet模型使用教程](./turtorial/finetune_pspnet.md) * [PSPNet模型使用教程](./tutorial/finetune_pspnet.md)
* [HRNet模型使用教程](./turtorial/finetune_hrnet.md) * [HRNet模型使用教程](./tutorial/finetune_hrnet.md)
* [Fast-SCNN模型使用教程](./turtorial/finetune_fast_scnn.md) * [Fast-SCNN模型使用教程](./tutorial/finetune_fast_scnn.md)
### 预测部署 ### 预测部署
......
...@@ -14,6 +14,7 @@ PaddleSeg对所有内置的分割模型都提供了公开数据集下的预训 ...@@ -14,6 +14,7 @@ PaddleSeg对所有内置的分割模型都提供了公开数据集下的预训
| MobileNetV2_0.5x | ImageNet | 0.5x | [MobileNetV2_0.5x](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_5_pretrained.tar) | 65.03%/85.72% | | MobileNetV2_0.5x | ImageNet | 0.5x | [MobileNetV2_0.5x](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_5_pretrained.tar) | 65.03%/85.72% |
| MobileNetV2_1.5x | ImageNet | 1.5x | [MobileNetV2_1.5x](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x1_5_pretrained.tar) | 74.12%/91.67% | | MobileNetV2_1.5x | ImageNet | 1.5x | [MobileNetV2_1.5x](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x1_5_pretrained.tar) | 74.12%/91.67% |
| MobileNetV2_2.0x | ImageNet | 2.0x | [MobileNetV2_2.0x](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x2_0_pretrained.tar) | 75.23%/92.58% | | MobileNetV2_2.0x | ImageNet | 2.0x | [MobileNetV2_2.0x](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x2_0_pretrained.tar) | 75.23%/92.58% |
| MobileNetV3_Large_ssld_1.0x | ImageNet | 1.0x | [MobileNetV3_Large_ssld_1.0x](https://paddleseg.bj.bcebos.com/models/MobileNetV3_large_x1_0_ssld_pretrained.tar) | 79.00%/94.50% |
用户可以结合实际场景的精度和预测性能要求,选取不同`Depth multiplier`参数的MobileNet模型。 用户可以结合实际场景的精度和预测性能要求,选取不同`Depth multiplier`参数的MobileNet模型。
...@@ -58,6 +59,7 @@ train数据集合为Cityscapes训练集合,测试为Cityscapes的验证集合 ...@@ -58,6 +59,7 @@ train数据集合为Cityscapes训练集合,测试为Cityscapes的验证集合
| 模型 | 数据集合 | 下载地址 |Output Stride| mutli-scale test| mIoU on val| | 模型 | 数据集合 | 下载地址 |Output Stride| mutli-scale test| mIoU on val|
|---|---|---|---|---|---| |---|---|---|---|---|---|
| DeepLabv3+/MobileNetv2/bn | Cityscapes |[mobilenet_cityscapes.tgz](https://paddleseg.bj.bcebos.com/models/mobilenet_cityscapes.tgz) |16|false| 0.698| | DeepLabv3+/MobileNetv2/bn | Cityscapes |[mobilenet_cityscapes.tgz](https://paddleseg.bj.bcebos.com/models/mobilenet_cityscapes.tgz) |16|false| 0.698|
| DeepLabv3+/MobileNetv3_Large/bn | Cityscapes |[deeplabv3p_mobilenetv3_large_cityscapes.tar.gz](https://paddleseg.bj.bcebos.com/models/deeplabv3p_mobilenetv3_large_cityscapes.tar.gz) |32|false| 0.7328|
| DeepLabv3+/Xception65/gn | Cityscapes |[deeplabv3p_xception65_gn_cityscapes.tgz](https://paddleseg.bj.bcebos.com/models/deeplabv3p_xception65_cityscapes.tgz) |16|false| 0.7824 | | DeepLabv3+/Xception65/gn | Cityscapes |[deeplabv3p_xception65_gn_cityscapes.tgz](https://paddleseg.bj.bcebos.com/models/deeplabv3p_xception65_cityscapes.tgz) |16|false| 0.7824 |
| DeepLabv3+/Xception65/bn | Cityscapes |[deeplabv3p_xception65_bn_cityscapes.tgz](https://paddleseg.bj.bcebos.com/models/xception65_bn_cityscapes.tgz) | 16 | false | 0.7930 | | DeepLabv3+/Xception65/bn | Cityscapes |[deeplabv3p_xception65_bn_cityscapes.tgz](https://paddleseg.bj.bcebos.com/models/xception65_bn_cityscapes.tgz) | 16 | false | 0.7930 |
| DeepLabv3+/ResNet50_vd/bn | Cityscapes |[deeplabv3p_resnet50_vd_cityscapes.tgz](https://paddleseg.bj.bcebos.com/models/deeplabv3p_resnet50_vd_cityscapes.tgz) | 16 | false | 0.8006 | | DeepLabv3+/ResNet50_vd/bn | Cityscapes |[deeplabv3p_resnet50_vd_cityscapes.tgz](https://paddleseg.bj.bcebos.com/models/deeplabv3p_resnet50_vd_cityscapes.tgz) | 16 | false | 0.8006 |
......
...@@ -24,6 +24,8 @@ from test_utils import download_file_and_uncompress ...@@ -24,6 +24,8 @@ from test_utils import download_file_and_uncompress
model_urls = { model_urls = {
# ImageNet Pretrained # ImageNet Pretrained
"mobilenetv3_large_ssld_imagenet":
"https://paddleseg.bj.bcebos.com/models/MobileNetV3_large_x1_0_ssld_pretrained.tar",
"mobilenetv2-2-0_bn_imagenet": "mobilenetv2-2-0_bn_imagenet":
"https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x2_0_pretrained.tar", "https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x2_0_pretrained.tar",
"mobilenetv2-1-5_bn_imagenet": "mobilenetv2-1-5_bn_imagenet":
...@@ -72,6 +74,8 @@ model_urls = { ...@@ -72,6 +74,8 @@ model_urls = {
"https://paddleseg.bj.bcebos.com/models/pspnet101_coco.tgz", "https://paddleseg.bj.bcebos.com/models/pspnet101_coco.tgz",
# Cityscapes pretrained # Cityscapes pretrained
"deeplabv3p_mobilenetv3_large_cityscapes":
"https://paddleseg.bj.bcebos.com/models/deeplabv3p_mobilenetv3_large_cityscapes.tar.gz",
"deeplabv3p_mobilenetv2-1-0_bn_cityscapes": "deeplabv3p_mobilenetv2-1-0_bn_cityscapes":
"https://paddleseg.bj.bcebos.com/models/mobilenet_cityscapes.tgz", "https://paddleseg.bj.bcebos.com/models/mobilenet_cityscapes.tgz",
"deeplabv3p_xception65_gn_cityscapes": "deeplabv3p_xception65_gn_cityscapes":
......
...@@ -149,6 +149,7 @@ PaddleSeg在AI Studio平台上提供了在线体验的DeepLabv3+图像分割教 ...@@ -149,6 +149,7 @@ PaddleSeg在AI Studio平台上提供了在线体验的DeepLabv3+图像分割教
|deeplabv3p_mobilenetv2-1-0_bn_coco|MobileNetV2|bn|COCO|MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: mobilenetv2 <br> MODEL.DEEPLAB.DEPTH_MULTIPLIER: 1.0 <br> MODEL.DEEPLAB.ENCODER_WITH_ASPP: False <br> MODEL.DEEPLAB.ENABLE_DECODER: False <br> MODEL.DEFAULT_NORM_TYPE: bn| |deeplabv3p_mobilenetv2-1-0_bn_coco|MobileNetV2|bn|COCO|MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: mobilenetv2 <br> MODEL.DEEPLAB.DEPTH_MULTIPLIER: 1.0 <br> MODEL.DEEPLAB.ENCODER_WITH_ASPP: False <br> MODEL.DEEPLAB.ENABLE_DECODER: False <br> MODEL.DEFAULT_NORM_TYPE: bn|
|**deeplabv3p_xception65_bn_coco**|Xception65|bn|COCO|MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: xception_65 <br> MODEL.DEFAULT_NORM_TYPE: bn | |**deeplabv3p_xception65_bn_coco**|Xception65|bn|COCO|MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: xception_65 <br> MODEL.DEFAULT_NORM_TYPE: bn |
|deeplabv3p_mobilenetv2-1-0_bn_cityscapes|MobileNetV2|bn|Cityscapes|MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: mobilenetv2 <br> MODEL.DEEPLAB.DEPTH_MULTIPLIER: 1.0 <br> MODEL.DEEPLAB.ENCODER_WITH_ASPP: False <br> MODEL.DEEPLAB.ENABLE_DECODER: False <br> MODEL.DEFAULT_NORM_TYPE: bn| |deeplabv3p_mobilenetv2-1-0_bn_cityscapes|MobileNetV2|bn|Cityscapes|MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: mobilenetv2 <br> MODEL.DEEPLAB.DEPTH_MULTIPLIER: 1.0 <br> MODEL.DEEPLAB.ENCODER_WITH_ASPP: False <br> MODEL.DEEPLAB.ENABLE_DECODER: False <br> MODEL.DEFAULT_NORM_TYPE: bn|
|deeplabv3p_mobilenetv3_large_cityscapes|MobileNetV3|bn|Cityscapes|MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: mobilenetv3_large <br> MODEL.DEFAULT_NORM_TYPE: bn|
|deeplabv3p_xception65_gn_cityscapes|Xception65|gn|Cityscapes|MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: xception_65 <br> MODEL.DEFAULT_NORM_TYPE: gn| |deeplabv3p_xception65_gn_cityscapes|Xception65|gn|Cityscapes|MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: xception_65 <br> MODEL.DEFAULT_NORM_TYPE: gn|
|deeplabv3p_xception65_bn_cityscapes|Xception65|bn|Cityscapes|MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: xception_65 <br> MODEL.DEFAULT_NORM_TYPE: bn| |deeplabv3p_xception65_bn_cityscapes|Xception65|bn|Cityscapes|MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: xception_65 <br> MODEL.DEFAULT_NORM_TYPE: bn|
|deeplabv3p_resnet50_vd_cityscapes|resnet50_vd|bn|Cityscapes|MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: resnet50_vd <br> MODEL.DEFAULT_NORM_TYPE: bn| |deeplabv3p_resnet50_vd_cityscapes|resnet50_vd|bn|Cityscapes|MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: resnet50_vd <br> MODEL.DEFAULT_NORM_TYPE: bn|
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册