提交 ca72ebf0 编写于 作者: C chenguowei01

Merge branch 'humanseg' of github.com:wuyefeilin/PaddleSeg into humanseg

......@@ -35,7 +35,7 @@ PaddleSeg是基于[PaddlePaddle](https://www.paddlepaddle.org.cn)开发的端到
- **高性能**
PaddleSeg支持多进程I/O、多卡并行、跨卡Batch Norm同步等训练加速策略,结合飞桨核心框架的显存优化功能,可大幅度减少分割模型的显存开销,让开发者更低成本、更高效地完成图像分割训练。
PaddleSeg支持多进程I/O、多卡并行等训练加速策略,结合飞桨核心框架的显存优化功能,可大幅度减少分割模型的显存开销,让开发者更低成本、更高效地完成图像分割训练。
- **工业级部署**
......
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# -*- coding: utf-8 -*-
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from utils.util import AttrDict, merge_cfg_from_args, get_arguments
import os
......@@ -22,7 +36,7 @@ cfg.MEAN = 0.406, 0.456, 0.485
cfg.STD = 0.225, 0.224, 0.229
# 多尺度预测时图像尺寸
cfg.multi_scales = (377,377), (473,473), (567,567)
cfg.multi_scales = (377, 377), (473, 473), (567, 567)
# 多尺度预测时图像是否水平翻转
cfg.flip = True
......
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
......
# -*- coding: utf-8 -*-
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import cv2
import numpy as np
......@@ -12,10 +26,11 @@ config = importlib.import_module('config')
cfg = getattr(config, 'cfg')
# paddle垃圾回收策略FLAG,ACE2P模型较大,当显存不够时建议开启
os.environ['FLAGS_eager_delete_tensor_gb']='0.0'
os.environ['FLAGS_eager_delete_tensor_gb'] = '0.0'
import paddle.fluid as fluid
# 预测数据集类
class TestDataSet():
def __init__(self):
......@@ -56,10 +71,10 @@ class TestDataSet():
img_path = self.data_list[index]
img = cv2.imread(img_path, cv2.IMREAD_COLOR)
if img is None:
return img, img,img_path, None
return img, img, img_path, None
img_name = img_path.split(os.sep)[-1]
name_prefix = img_name.replace('.'+img_name.split('.')[-1],'')
name_prefix = img_name.replace('.' + img_name.split('.')[-1], '')
img_shape = img.shape[:2]
img_process = self.preprocess(img)
......@@ -96,22 +111,27 @@ def infer():
# ACE2P模型使用多尺度预测
reader = importlib.import_module('reader')
multi_scale_test = getattr(reader, 'multi_scale_test')
parsing, logits = multi_scale_test(exe, test_prog, feed_name, fetch_list, image, im_shape)
parsing, logits = multi_scale_test(exe, test_prog, feed_name,
fetch_list, image, im_shape)
else:
# HumanSeg,RoadLine模型单尺度预测
result = exe.run(program=test_prog, feed={feed_name[0]: image}, fetch_list=fetch_list)
result = exe.run(
program=test_prog,
feed={feed_name[0]: image},
fetch_list=fetch_list)
parsing = np.argmax(result[0][0], axis=0)
parsing = cv2.resize(parsing.astype(np.uint8), im_shape[::-1])
# 预测结果保存
result_path = os.path.join(cfg.vis_dir, im_name + '.png')
if cfg.example == 'HumanSeg':
logits = result[0][0][1]*255
logits = result[0][0][1] * 255
logits = cv2.resize(logits, im_shape[::-1])
ret, logits = cv2.threshold(logits, thresh, 0, cv2.THRESH_TOZERO)
logits = 255 *(logits - thresh)/(255 - thresh)
logits = 255 * (logits - thresh) / (255 - thresh)
# 将分割结果添加到alpha通道
rgba = np.concatenate((ori_img, np.expand_dims(logits, axis=2)), axis=2)
rgba = np.concatenate((ori_img, np.expand_dims(logits, axis=2)),
axis=2)
cv2.imwrite(result_path, rgba)
else:
output_im = PILImage.fromarray(np.asarray(parsing, dtype=np.uint8))
......
# -*- coding: utf-8 -*-
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import paddle.fluid as fluid
from config import cfg
import cv2
def get_affine_points(src_shape, dst_shape, rot_grad=0):
# 获取图像和仿射后图像的三组对应点坐标
# 三组点为仿射变换后图像的中心点, [w/2,0], [0,0],及对应原始图像的点
......@@ -34,6 +49,7 @@ def get_affine_points(src_shape, dst_shape, rot_grad=0):
return points, points_trans
def preprocess(im):
# ACE2P模型数据预处理
im_shape = im.shape[:2]
......@@ -42,13 +58,10 @@ def preprocess(im):
# 获取图像和仿射变换后图像的对应点坐标
points, points_trans = get_affine_points(im_shape, scale)
# 根据对应点集获得仿射矩阵
trans = cv2.getAffineTransform(np.float32(points),
np.float32(points_trans))
trans = cv2.getAffineTransform(
np.float32(points), np.float32(points_trans))
# 根据仿射矩阵对图像进行仿射
input = cv2.warpAffine(im,
trans,
scale[::-1],
flags=cv2.INTER_LINEAR)
input = cv2.warpAffine(im, trans, scale[::-1], flags=cv2.INTER_LINEAR)
# 减均值测,除以方差,转换数据格式为NCHW
input = input.astype(np.float32)
......@@ -66,8 +79,8 @@ def preprocess(im):
return input_images
def multi_scale_test(exe, test_prog, feed_name, fetch_list,
input_ims, im_shape):
def multi_scale_test(exe, test_prog, feed_name, fetch_list, input_ims,
im_shape):
# 由于部分类别分左右部位, flipped_idx为其水平翻转后对应的标签
flipped_idx = (15, 14, 17, 16, 19, 18)
......@@ -76,7 +89,8 @@ def multi_scale_test(exe, test_prog, feed_name, fetch_list,
# 多尺度预测
for idx, scale in enumerate(cfg.multi_scales):
input_im = input_ims[idx]
parsing_output = exe.run(program=test_prog,
parsing_output = exe.run(
program=test_prog,
feed={feed_name[0]: input_im},
fetch_list=fetch_list)
output = parsing_output[0][0]
......@@ -92,7 +106,8 @@ def multi_scale_test(exe, test_prog, feed_name, fetch_list,
# 仿射变换回图像原始尺寸
points, points_trans = get_affine_points(im_shape, scale)
M = cv2.getAffineTransform(np.float32(points_trans), np.float32(points))
logits_result = cv2.warpAffine(output, M, im_shape[::-1], flags=cv2.INTER_LINEAR)
logits_result = cv2.warpAffine(
output, M, im_shape[::-1], flags=cv2.INTER_LINEAR)
ms_outputs.append(logits_result)
# 多尺度预测结果求均值,求预测概率最大的类别
......@@ -100,4 +115,3 @@ def multi_scale_test(exe, test_prog, feed_name, fetch_list,
ms_fused_parsing_output = np.mean(ms_fused_parsing_output, axis=0)
parsing = np.argmax(ms_fused_parsing_output, axis=2)
return parsing, ms_fused_parsing_output
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
......@@ -7,6 +7,7 @@
## This source code is licensed under the MIT-style license found in the
## LICENSE file in the root directory of this source tree
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
......
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import argparse
import os
def get_arguments():
parser = argparse.ArgumentParser()
parser.add_argument("--use_gpu",
action="store_true",
help="Use gpu or cpu to test.")
parser.add_argument('--example',
type=str,
help='RoadLine, HumanSeg or ACE2P')
parser.add_argument(
"--use_gpu", action="store_true", help="Use gpu or cpu to test.")
parser.add_argument(
'--example', type=str, help='RoadLine, HumanSeg or ACE2P')
return parser.parse_args()
......@@ -34,6 +48,7 @@ class AttrDict(dict):
else:
self[name] = value
def merge_cfg_from_args(args, cfg):
"""Merge config keys, values in args into the global config."""
for k, v in vars(args).items():
......@@ -44,4 +59,3 @@ def merge_cfg_from_args(args, cfg):
value = v
if value is not None:
cfg[k] = value
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
......
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -12,9 +13,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# utils for memory management which is allocated on sharedmemory,
# note that these structures may not be thread-safe
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
......
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import models
import argparse
......
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import os.path as osp
......
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .humanseg import HumanSegMobile
from .humanseg import HumanSegServer
from .humanseg import HumanSegLite
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
......@@ -24,6 +25,7 @@ import time
import tqdm
import cv2
import yaml
import shutil
import paddleslim as slim
import utils
......@@ -102,7 +104,7 @@ class SegModel(object):
# 当前模型状态
self.status = 'Normal'
def _get_single_car_bs(self, batch_size):
def _get_single_card_bs(self, batch_size):
if batch_size % len(self.places) == 0:
return int(batch_size // len(self.places))
else:
......@@ -144,7 +146,7 @@ class SegModel(object):
capacity=64,
use_double_buffer=True,
iterable=True)
batch_size_each_gpu = self._get_single_car_bs(batch_size)
batch_size_each_gpu = self._get_single_card_bs(batch_size)
self.train_data_loader.set_sample_list_generator(
dataset.generator(batch_size=batch_size_each_gpu),
places=self.places)
......@@ -242,30 +244,11 @@ class SegModel(object):
if self.status == 'Normal':
fluid.save(self.train_prog, osp.join(save_dir, 'model'))
model_info['status'] = 'Normal'
elif self.status == 'Quant':
float_prog, _ = slim.quant.convert(
self.test_prog, self.exe.place, save_int8=True)
test_input_names = [
var.name for var in list(self.test_inputs.values())
]
test_outputs = list(self.test_outputs.values())
fluid.io.save_inference_model(
dirname=save_dir,
executor=self.exe,
params_filename='__params__',
feeded_var_names=test_input_names,
target_vars=test_outputs,
main_program=float_prog)
fluid.save(self.test_prog, osp.join(save_dir, 'model'))
model_info['status'] = 'QuantOnline'
model_info['_ModelInputsOutputs'] = dict()
model_info['_ModelInputsOutputs']['test_inputs'] = [
[k, v.name] for k, v in self.test_inputs.items()
]
model_info['_ModelInputsOutputs']['test_outputs'] = [
[k, v.name] for k, v in self.test_outputs.items()
]
model_info['status'] = self.status
with open(
osp.join(save_dir, 'model.yml'), encoding='utf-8',
mode='w') as f:
......@@ -307,18 +290,20 @@ class SegModel(object):
logging.info("Model for inference deploy saved in {}.".format(save_dir))
def export_quant_model(self,
dataset,
save_dir,
dataset=None,
save_dir=None,
batch_size=1,
batch_nums=10,
cache_dir="./.temp"):
cache_dir=".temp",
quant_type="offline"):
if quant_type == "offline":
self.arrange_transform(transforms=dataset.transforms, mode='quant')
dataset.num_samples = batch_size * batch_nums
try:
from utils import HumanSegPostTrainingQuantization
except:
raise Exception(
"Model Quantization is not available, try to upgrade your paddlepaddle>=1.7.0"
"Model Quantization is not available, try to upgrade your paddlepaddle>=1.8.1"
)
is_use_cache_file = True
if cache_dir is None:
......@@ -340,7 +325,22 @@ class SegModel(object):
post_training_quantization.quantize()
post_training_quantization.save_quantized_model(save_dir)
if cache_dir is not None:
os.system('rm -r' + cache_dir)
shutil.rmtree(cache_dir)
else:
float_prog, _ = slim.quant.convert(
self.test_prog, self.exe.place, save_int8=True)
test_input_names = [
var.name for var in list(self.test_inputs.values())
]
test_outputs = list(self.test_outputs.values())
fluid.io.save_inference_model(
dirname=save_dir,
executor=self.exe,
params_filename='__params__',
feeded_var_names=test_input_names,
target_vars=test_outputs,
main_program=float_prog)
model_info = self.get_model_info()
model_info['status'] = 'Quant'
......@@ -592,6 +592,16 @@ class SegModel(object):
'Current evaluated best model in eval_dataset is epoch_{}, miou={}'
.format(best_model_epoch, best_miou))
if quant:
if osp.exists(osp.join(save_dir, "best_model")):
fluid.load(
program=self.test_prog,
model_path=osp.join(save_dir, "best_model"),
executor=self.exe)
self.export_quant_model(
save_dir=osp.join(save_dir, "best_model_export"),
quant_type="online")
def evaluate(self, eval_dataset, batch_size=1, epoch_id=None):
"""评估。
......
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -24,7 +25,7 @@ import models
def load_model(model_dir):
if not osp.exists(osp.join(model_dir, "model.yml")):
raise Exception("There's not model.yml in {}".format(model_dir))
raise Exception("There's no model.yml in {}".format(model_dir))
with open(osp.join(model_dir, "model.yml")) as f:
info = yaml.load(f.read(), Loader=yaml.Loader)
status = info['status']
......@@ -33,7 +34,7 @@ def load_model(model_dir):
raise Exception("There's no attribute {} in models".format(
info['Model']))
model = getattr(models, info['Model'])(**info['_init_params'])
if status == "Normal":
if status in ["Normal", "QuantOnline"]:
startup_prog = fluid.Program()
model.test_prog = fluid.Program()
with fluid.program_guard(model.test_prog, startup_prog):
......@@ -41,11 +42,16 @@ def load_model(model_dir):
model.test_inputs, model.test_outputs = model.build_net(
mode='test')
model.test_prog = model.test_prog.clone(for_test=True)
if status == "QuantOnline":
print('test quant online')
import paddleslim as slim
model.test_prog = slim.quant.quant_aware(
model.test_prog, model.exe.place, for_test=True)
model.exe.run(startup_prog)
import pickle
with open(osp.join(model_dir, 'model.pdparams'), 'rb') as f:
load_dict = pickle.load(f)
fluid.io.set_program_state(model.test_prog, load_dict)
fluid.load(model.test_prog, osp.join(model_dir, 'model'))
if status == "QuantOnline":
model.test_prog = slim.quant.convert(model.test_prog,
model.exe.place)
elif status in ['Infer', 'Quant']:
[prog, input_names, outputs] = fluid.io.load_inference_model(
......
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .backbone import mobilenet_v2
from .backbone import xception
from .deeplabv3p import DeepLabv3p
......
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .mobilenet_v2 import MobileNetV2
from .xception import Xception
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -10,6 +11,7 @@
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
......
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......
# coding: utf8
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......
# coding: utf8
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......
# coding: utf8
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
......
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
......
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from datasets.dataset import Dataset
import transforms
......
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from datasets.dataset import Dataset
from models import HumanSegMobile, HumanSegLite, HumanSegServer
......
visualdl == 2.0.0b1
visualdl >= 2.0.0b1
paddleslim
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from datasets.dataset import Dataset
from models import HumanSegMobile, HumanSegLite, HumanSegServer
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
......
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import cv2
import os
......
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -14,12 +15,14 @@
from paddle.fluid.contrib.slim.quantization.quantization_pass import QuantizationTransformPass
from paddle.fluid.contrib.slim.quantization.quantization_pass import AddQuantDequantPass
from paddle.fluid.contrib.slim.quantization.quantization_pass import _op_real_in_out_name
from paddle.fluid.contrib.slim.quantization.quantization_pass import _out_scale_op_list
from paddle.fluid.contrib.slim.quantization import PostTrainingQuantization
import utils.logging as logging
import paddle.fluid as fluid
import os
import utils.logging as logging
import re
import numpy as np
import time
class HumanSegPostTrainingQuantization(PostTrainingQuantization):
......@@ -42,7 +45,6 @@ class HumanSegPostTrainingQuantization(PostTrainingQuantization):
fp32 model. It uses calibrate data to calculate the scale factor of
quantized variables, and inserts fake quant/dequant op to obtain the
quantized model.
Args:
executor(fluid.Executor): The executor to load, run and save the
quantized model.
......@@ -76,6 +78,21 @@ class HumanSegPostTrainingQuantization(PostTrainingQuantization):
Returns:
None
'''
self._support_activation_quantize_type = [
'range_abs_max', 'moving_average_abs_max', 'abs_max'
]
self._support_weight_quantize_type = ['abs_max', 'channel_wise_abs_max']
self._support_algo_type = ['KL', 'abs_max', 'min_max']
self._support_quantize_op_type = \
list(set(QuantizationTransformPass._supported_quantizable_op_type +
AddQuantDequantPass._supported_quantizable_op_type))
# Check inputs
assert executor is not None, "The executor cannot be None."
assert batch_size > 0, "The batch_size should be greater than 0."
assert algo in self._support_algo_type, \
"The algo should be KL, abs_max or min_max."
self._executor = executor
self._dataset = dataset
self._batch_size = batch_size
......@@ -84,18 +101,19 @@ class HumanSegPostTrainingQuantization(PostTrainingQuantization):
self._algo = algo
self._is_use_cache_file = is_use_cache_file
self._cache_dir = cache_dir
self._activation_bits = 8
self._weight_bits = 8
self._activation_quantize_type = 'range_abs_max'
self._weight_quantize_type = 'channel_wise_abs_max'
if self._is_use_cache_file and not os.path.exists(self._cache_dir):
os.mkdir(self._cache_dir)
supported_quantizable_op_type = \
QuantizationTransformPass._supported_quantizable_op_type + \
AddQuantDequantPass._supported_quantizable_op_type
if is_full_quantize:
self._quantizable_op_type = supported_quantizable_op_type
self._quantizable_op_type = self._support_quantize_op_type
else:
self._quantizable_op_type = quantizable_op_type
for op_type in self._quantizable_op_type:
assert op_type in supported_quantizable_op_type + \
assert op_type in self._support_quantize_op_type + \
AddQuantDequantPass._activation_type, \
op_type + " is not supported for quantization."
......@@ -105,53 +123,72 @@ class HumanSegPostTrainingQuantization(PostTrainingQuantization):
self._fetch_list = list(outputs.values())
self._data_loader = None
self._op_real_in_out_name = _op_real_in_out_name
self._out_scale_op_list = _out_scale_op_list
self._bit_length = 8
self._quantized_weight_var_name = set()
self._quantized_act_var_name = set()
self._sampling_data = {}
self._quantized_var_scale_factor = {}
self._quantized_var_kl_threshold = {}
self._quantized_var_min = {}
self._quantized_var_max = {}
self._quantized_var_abs_max = {}
def quantize(self):
'''
Quantize the fp32 model. Use calibrate data to calculate the scale factor of
quantized variables, and inserts fake quant/dequant op to obtain the
quantized model.
Args:
None
Returns:
the program of quantized model.
'''
self._preprocess()
self._load_model_data()
self._collect_target_varnames()
self._set_activation_persistable()
batch_ct = 0
for data in self._data_loader():
batch_ct += 1
if self._batch_nums and batch_ct >= self._batch_nums:
break
batch_id = 0
logging.info("Start to run batch!")
for data in self._data_loader():
start = time.time()
self._executor.run(
program=self._program,
feed=data,
fetch_list=self._fetch_list,
return_numpy=False)
if self._algo == "KL":
self._sample_data(batch_id)
if batch_id % 5 == 0:
logging.info("run batch: {}".format(batch_id))
else:
self._sample_threshold()
end = time.time()
logging.debug(
'[Run batch data] Batch={}/{}, time_each_batch={} s.'.format(
str(batch_id + 1), str(batch_ct), str(end - start)))
batch_id += 1
if self._batch_nums and batch_id >= self._batch_nums:
break
logging.info("all run batch: ".format(batch_id))
logging.info("calculate scale factor ...")
self._calculate_scale_factor()
logging.info("update the program ...")
logging.info("All run batch: ".format(batch_id))
self._reset_activation_persistable()
logging.info("Calculate scale factor ...")
if self._algo == "KL":
self._calculate_kl_threshold()
logging.info("Update the program ...")
if self._algo in ["KL", "abs_max"]:
self._update_program()
self._save_output_scale()
else:
self._save_input_threhold()
logging.info("Save ...")
self._save_output_threshold()
logging.info("Finish quant!")
return self._program
def save_quantized_model(self, save_model_path):
'''
Save the quantized model to the disk.
Args:
save_model_path(str): The path to save the quantized model
Returns:
......@@ -166,59 +203,78 @@ class HumanSegPostTrainingQuantization(PostTrainingQuantization):
params_filename='__params__',
main_program=self._program)
def _preprocess(self):
def _load_model_data(self):
'''
Load model and set data loader, collect the variable names for sampling,
and set activation variables to be persistable.
Set data loader.
'''
feed_vars = [fluid.framework._get_var(var.name, self._program) \
for var in self._feed_list]
self._data_loader = fluid.io.DataLoader.from_generator(
feed_list=feed_vars, capacity=3 * self._batch_size, iterable=True)
self._data_loader.set_sample_list_generator(
self._dataset.generator(self._batch_size, drop_last=True),
places=self._place)
# collect the variable names for sampling
persistable_var_names = []
for var in self._program.list_vars():
if var.persistable:
persistable_var_names.append(var.name)
def _calculate_kl_threshold(self):
'''
Calculate the KL threshold of quantized variables.
'''
assert self._algo == "KL", "The algo should be KL to calculate kl threshold."
ct = 1
# Abs_max threshold for weights
for var_name in self._quantized_weight_var_name:
start = time.time()
weight_data = self._sampling_data[var_name]
weight_threshold = None
if self._weight_quantize_type == "abs_max":
weight_threshold = np.max(np.abs(weight_data))
elif self._weight_quantize_type == "channel_wise_abs_max":
weight_threshold = []
for i in range(weight_data.shape[0]):
abs_max_value = np.max(np.abs(weight_data[i]))
weight_threshold.append(abs_max_value)
self._quantized_var_kl_threshold[var_name] = weight_threshold
end = time.time()
logging.debug(
'[Calculate weight] Weight_id={}/{}, time_each_weight={} s.'.
format(
str(ct), str(len(self._quantized_weight_var_name)),
str(end - start)))
ct += 1
for op in self._program.global_block().ops:
op_type = op.type
if op_type in self._quantizable_op_type:
if op_type in ("conv2d", "depthwise_conv2d"):
self._quantized_act_var_name.add(op.input("Input")[0])
self._quantized_weight_var_name.add(op.input("Filter")[0])
self._quantized_act_var_name.add(op.output("Output")[0])
elif op_type == "mul":
if self._is_input_all_not_persistable(
op, persistable_var_names):
op._set_attr("skip_quant", True)
logging.warning(
"Skip quant a mul op for two input variables are not persistable"
)
ct = 1
# KL threshold for activations
if self._is_use_cache_file:
for var_name in self._quantized_act_var_name:
start = time.time()
sampling_data = []
filenames = [f for f in os.listdir(self._cache_dir) \
if re.match(var_name + '_[0-9]+.npy', f)]
for filename in filenames:
file_path = os.path.join(self._cache_dir, filename)
sampling_data.append(np.load(file_path))
os.remove(file_path)
sampling_data = np.concatenate(sampling_data)
self._quantized_var_kl_threshold[var_name] = \
self._get_kl_scaling_factor(np.abs(sampling_data))
end = time.time()
logging.debug(
'[Calculate activation] Activation_id={}/{}, time_each_activation={} s.'
.format(
str(ct), str(len(self._quantized_act_var_name)),
str(end - start)))
ct += 1
else:
self._quantized_act_var_name.add(op.input("X")[0])
self._quantized_weight_var_name.add(op.input("Y")[0])
self._quantized_act_var_name.add(op.output("Out")[0])
else:
# process other quantizable op type, the input must all not persistable
if self._is_input_all_not_persistable(
op, persistable_var_names):
input_output_name_list = self._op_real_in_out_name[
op_type]
for input_name in input_output_name_list[0]:
for var_name in op.input(input_name):
self._quantized_act_var_name.add(var_name)
for output_name in input_output_name_list[1]:
for var_name in op.output(output_name):
self._quantized_act_var_name.add(var_name)
# set activation variables to be persistable, so can obtain
# the tensor data in sample_data
for var in self._program.list_vars():
if var.name in self._quantized_act_var_name:
var.persistable = True
for var_name in self._quantized_act_var_name:
start = time.time()
self._sampling_data[var_name] = np.concatenate(
self._sampling_data[var_name])
self._quantized_var_kl_threshold[var_name] = \
self._get_kl_scaling_factor(np.abs(self._sampling_data[var_name]))
end = time.time()
logging.debug(
'[Calculate activation] Activation_id={}/{}, time_each_activation={} s.'
.format(
str(ct), str(len(self._quantized_act_var_name)),
str(end - start)))
ct += 1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -205,11 +206,9 @@ def load_pretrained_weights(exe, main_prog, weights_dir, fuse_bn=False):
vars_to_load.append(var)
logging.debug("Weight {} will be load".format(var.name))
fluid.io.load_vars(
executor=exe,
dirname=weights_dir,
main_program=main_prog,
vars=vars_to_load)
params_dict = fluid.io.load_program_state(
weights_dir, var_list=vars_to_load)
fluid.io.set_program_state(main_prog, params_dict)
if len(vars_to_load) == 0:
logging.warning(
"There is no pretrain weights loaded, maybe you should check you pretrain model!"
......
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from datasets.dataset import Dataset
import transforms
......
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import os.path as osp
......
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -21,6 +21,7 @@ from models.model_builder import ModelPhase
from pdseg.data_aug import get_random_scale, randomly_scale_image_and_label, random_rotation, \
rand_scale_aspect, hsv_color_jitter, rand_crop
def resize(img, grt=None, grt_instance=None, mode=ModelPhase.TRAIN):
"""
改变图像及标签图像尺寸
......@@ -44,7 +45,8 @@ def resize(img, grt=None, grt_instance=None, mode=ModelPhase.TRAIN):
if grt is not None:
grt = cv2.resize(grt, target_size, interpolation=cv2.INTER_NEAREST)
if grt_instance is not None:
grt_instance = cv2.resize(grt_instance, target_size, interpolation=cv2.INTER_NEAREST)
grt_instance = cv2.resize(
grt_instance, target_size, interpolation=cv2.INTER_NEAREST)
elif cfg.AUG.AUG_METHOD == 'stepscaling':
if mode == ModelPhase.TRAIN:
min_scale_factor = cfg.AUG.MIN_SCALE_FACTOR
......
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
......
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -122,6 +122,9 @@ def evaluate(cfg, ckpt_dir=None, use_gpu=False, use_mpio=False, **kwargs):
if ckpt_dir is not None:
print('load test model:', ckpt_dir)
try:
fluid.load(test_prog, os.path.join(ckpt_dir, 'model'), exe)
except:
fluid.io.load_params(exe, ckpt_dir, main_program=test_prog)
# Use streaming confusion matrix to calculate mean_iou
......
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -19,8 +19,9 @@ from utils.config import cfg
def unsorted_segment_sum(data, segment_ids, unique_labels, feature_dims):
zeros = fluid.layers.fill_constant_batch_size_like(unique_labels, shape=[1, feature_dims],
dtype='float32', value=0)
unique_labels_shape = fluid.layers.shape(unique_labels)
zeros = fluid.layers.fill_constant(
shape=[unique_labels_shape[0], feature_dims], dtype='float32', value=0)
segment_ids = fluid.layers.unsqueeze(segment_ids, axes=[1])
segment_ids.stop_gradient = True
segment_sum = fluid.layers.scatter_nd_add(zeros, segment_ids, data)
......@@ -30,29 +31,23 @@ def unsorted_segment_sum(data, segment_ids, unique_labels, feature_dims):
def norm(x, axis=-1):
distance = fluid.layers.reduce_sum(fluid.layers.abs(x), dim=axis, keep_dim=True)
distance = fluid.layers.reduce_sum(
fluid.layers.abs(x), dim=axis, keep_dim=True)
return distance
def discriminative_loss_single(
prediction,
correct_label,
feature_dim,
label_shape,
delta_v,
delta_d,
param_var,
param_dist,
param_reg):
correct_label = fluid.layers.reshape(
correct_label, [
label_shape[1] * label_shape[0]])
def discriminative_loss_single(prediction, correct_label, feature_dim,
label_shape, delta_v, delta_d, param_var,
param_dist, param_reg):
correct_label = fluid.layers.reshape(correct_label,
[label_shape[1] * label_shape[0]])
prediction = fluid.layers.transpose(prediction, [1, 2, 0])
reshaped_pred = fluid.layers.reshape(
prediction, [
label_shape[1] * label_shape[0], feature_dim])
prediction, [label_shape[1] * label_shape[0], feature_dim])
unique_labels, unique_id, counts = fluid.layers.unique_with_counts(correct_label)
unique_labels, unique_id, counts = fluid.layers.unique_with_counts(
correct_label)
correct_label.stop_gradient = True
counts = fluid.layers.cast(counts, 'float32')
num_instances = fluid.layers.shape(unique_labels)
......@@ -69,24 +64,29 @@ def discriminative_loss_single(
distance = norm(tmp)
distance = distance - delta_v
distance_pos = fluid.layers.greater_equal(distance, fluid.layers.zeros_like(distance))
distance_pos = fluid.layers.greater_equal(distance,
fluid.layers.zeros_like(distance))
distance_pos = fluid.layers.cast(distance_pos, 'float32')
distance = distance * distance_pos
distance = fluid.layers.square(distance)
l_var = unsorted_segment_sum(distance, unique_id, unique_labels, feature_dims=1)
l_var = unsorted_segment_sum(
distance, unique_id, unique_labels, feature_dims=1)
l_var = fluid.layers.elementwise_div(l_var, counts_rsp)
l_var = fluid.layers.reduce_sum(l_var)
l_var = l_var / fluid.layers.cast(num_instances * (num_instances - 1), 'float32')
l_var = l_var / fluid.layers.cast(num_instances * (num_instances - 1),
'float32')
mu_interleaved_rep = fluid.layers.expand(mu, [num_instances, 1])
mu_band_rep = fluid.layers.expand(mu, [1, num_instances])
mu_band_rep = fluid.layers.reshape(mu_band_rep, (num_instances * num_instances, feature_dim))
mu_band_rep = fluid.layers.reshape(
mu_band_rep, (num_instances * num_instances, feature_dim))
mu_diff = fluid.layers.elementwise_sub(mu_band_rep, mu_interleaved_rep)
intermediate_tensor = fluid.layers.reduce_sum(fluid.layers.abs(mu_diff), dim=1)
intermediate_tensor = fluid.layers.reduce_sum(
fluid.layers.abs(mu_diff), dim=1)
intermediate_tensor.stop_gradient = True
zero_vector = fluid.layers.zeros([1], 'float32')
bool_mask = fluid.layers.not_equal(intermediate_tensor, zero_vector)
......@@ -95,7 +95,8 @@ def discriminative_loss_single(
mu_norm = norm(mu_diff_bool)
mu_norm = 2. * delta_d - mu_norm
mu_norm_pos = fluid.layers.greater_equal(mu_norm, fluid.layers.zeros_like(mu_norm))
mu_norm_pos = fluid.layers.greater_equal(mu_norm,
fluid.layers.zeros_like(mu_norm))
mu_norm_pos = fluid.layers.cast(mu_norm_pos, 'float32')
mu_norm = mu_norm * mu_norm_pos
mu_norm_pos.stop_gradient = True
......@@ -122,8 +123,8 @@ def discriminative_loss(prediction, correct_label, feature_dim, image_shape,
output_ta_reg = 0.
for i in range(batch_size):
disc_loss_single, l_var_single, l_dist_single, l_reg_single = discriminative_loss_single(
prediction[i], correct_label[i], feature_dim, image_shape, delta_v, delta_d, param_var, param_dist,
param_reg)
prediction[i], correct_label[i], feature_dim, image_shape, delta_v,
delta_d, param_var, param_dist, param_reg)
output_ta_loss += disc_loss_single
output_ta_var += l_var_single
output_ta_dist += l_dist_single
......@@ -134,5 +135,3 @@ def discriminative_loss(prediction, correct_label, feature_dim, image_shape,
l_dist = output_ta_dist / batch_size
l_reg = output_ta_reg / batch_size
return disc_loss, l_var, l_dist, l_reg
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -18,7 +18,6 @@ from __future__ import print_function
import paddle.fluid as fluid
from utils.config import cfg
from pdseg.models.libs.model_libs import scope, name_scope
from pdseg.models.libs.model_libs import bn, bn_relu, relu
......@@ -86,7 +85,12 @@ def bottleneck(inputs,
with scope('down_sample'):
inputs_shape = inputs.shape
with scope('main_max_pool'):
net_main = fluid.layers.conv2d(inputs, inputs_shape[1], filter_size=3, stride=2, padding='SAME')
net_main = fluid.layers.conv2d(
inputs,
inputs_shape[1],
filter_size=3,
stride=2,
padding='SAME')
#First get the difference in depth to pad, then pad with zeros only on the last dimension.
depth_to_pad = abs(inputs_shape[1] - output_depth)
......@@ -95,12 +99,16 @@ def bottleneck(inputs,
net_main = fluid.layers.pad(net_main, paddings=paddings)
with scope('block1'):
net = conv(inputs, reduced_depth, [2, 2], stride=2, padding='same')
net = conv(
inputs, reduced_depth, [2, 2], stride=2, padding='same')
net = bn(net)
net = prelu(net, decoder=decoder)
with scope('block2'):
net = conv(net, reduced_depth, [filter_size, filter_size], padding='same')
net = conv(
net,
reduced_depth, [filter_size, filter_size],
padding='same')
net = bn(net)
net = prelu(net, decoder=decoder)
......@@ -137,13 +145,18 @@ def bottleneck(inputs,
# Second conv block --- apply dilated convolution here
with scope('block2'):
net = conv(net, reduced_depth, filter_size, padding='SAME', dilation=dilation_rate)
net = conv(
net,
reduced_depth,
filter_size,
padding='SAME',
dilation=dilation_rate)
net = bn(net)
net = prelu(net, decoder=decoder)
# Final projection with 1x1 kernel (Expansion)
with scope('block3'):
net = conv(net, output_depth, [1,1])
net = conv(net, output_depth, [1, 1])
net = bn(net)
net = prelu(net, decoder=decoder)
......@@ -172,9 +185,11 @@ def bottleneck(inputs,
# Second conv block --- apply asymmetric conv here
with scope('block2'):
with scope('asymmetric_conv2a'):
net = conv(net, reduced_depth, [filter_size, 1], padding='same')
net = conv(
net, reduced_depth, [filter_size, 1], padding='same')
with scope('asymmetric_conv2b'):
net = conv(net, reduced_depth, [1, filter_size], padding='same')
net = conv(
net, reduced_depth, [1, filter_size], padding='same')
net = bn(net)
net = prelu(net, decoder=decoder)
......@@ -211,7 +226,8 @@ def bottleneck(inputs,
with scope('unpool'):
net_unpool = conv(inputs, output_depth, [1, 1])
net_unpool = bn(net_unpool)
net_unpool = fluid.layers.resize_bilinear(net_unpool, out_shape=output_shape[2:])
net_unpool = fluid.layers.resize_bilinear(
net_unpool, out_shape=output_shape[2:])
# First 1x1 projection to reduce depth
with scope('block1'):
......@@ -220,7 +236,12 @@ def bottleneck(inputs,
net = prelu(net, decoder=decoder)
with scope('block2'):
net = deconv(net, reduced_depth, filter_size=filter_size, stride=2, padding='same')
net = deconv(
net,
reduced_depth,
filter_size=filter_size,
stride=2,
padding='same')
net = bn(net)
net = prelu(net, decoder=decoder)
......@@ -253,7 +274,10 @@ def bottleneck(inputs,
# Second conv block
with scope('block2'):
net = conv(net, reduced_depth, [filter_size, filter_size], padding='same')
net = conv(
net,
reduced_depth, [filter_size, filter_size],
padding='same')
net = bn(net)
net = prelu(net, decoder=decoder)
......@@ -281,16 +305,32 @@ def ENet_stage1(inputs, name_scope='stage1_block'):
= bottleneck(inputs, output_depth=64, filter_size=3, regularizer_prob=0.01, type=DOWNSAMPLING,
name_scope='bottleneck1_0')
with scope('bottleneck1_1'):
net = bottleneck(net, output_depth=64, filter_size=3, regularizer_prob=0.01,
net = bottleneck(
net,
output_depth=64,
filter_size=3,
regularizer_prob=0.01,
name_scope='bottleneck1_1')
with scope('bottleneck1_2'):
net = bottleneck(net, output_depth=64, filter_size=3, regularizer_prob=0.01,
net = bottleneck(
net,
output_depth=64,
filter_size=3,
regularizer_prob=0.01,
name_scope='bottleneck1_2')
with scope('bottleneck1_3'):
net = bottleneck(net, output_depth=64, filter_size=3, regularizer_prob=0.01,
net = bottleneck(
net,
output_depth=64,
filter_size=3,
regularizer_prob=0.01,
name_scope='bottleneck1_3')
with scope('bottleneck1_4'):
net = bottleneck(net, output_depth=64, filter_size=3, regularizer_prob=0.01,
net = bottleneck(
net,
output_depth=64,
filter_size=3,
regularizer_prob=0.01,
name_scope='bottleneck1_4')
return net, inputs_shape_1
......@@ -302,16 +342,37 @@ def ENet_stage2(inputs, name_scope='stage2_block'):
name_scope='bottleneck2_0')
for i in range(2):
with scope('bottleneck2_{}'.format(str(4 * i + 1))):
net = bottleneck(net, output_depth=128, filter_size=3, regularizer_prob=0.1,
net = bottleneck(
net,
output_depth=128,
filter_size=3,
regularizer_prob=0.1,
name_scope='bottleneck2_{}'.format(str(4 * i + 1)))
with scope('bottleneck2_{}'.format(str(4 * i + 2))):
net = bottleneck(net, output_depth=128, filter_size=3, regularizer_prob=0.1, type=DILATED, dilation_rate=(2 ** (2*i+1)),
net = bottleneck(
net,
output_depth=128,
filter_size=3,
regularizer_prob=0.1,
type=DILATED,
dilation_rate=(2**(2 * i + 1)),
name_scope='bottleneck2_{}'.format(str(4 * i + 2)))
with scope('bottleneck2_{}'.format(str(4 * i + 3))):
net = bottleneck(net, output_depth=128, filter_size=5, regularizer_prob=0.1, type=ASYMMETRIC,
net = bottleneck(
net,
output_depth=128,
filter_size=5,
regularizer_prob=0.1,
type=ASYMMETRIC,
name_scope='bottleneck2_{}'.format(str(4 * i + 3)))
with scope('bottleneck2_{}'.format(str(4 * i + 4))):
net = bottleneck(net, output_depth=128, filter_size=3, regularizer_prob=0.1, type=DILATED, dilation_rate=(2 ** (2*i+2)),
net = bottleneck(
net,
output_depth=128,
filter_size=3,
regularizer_prob=0.1,
type=DILATED,
dilation_rate=(2**(2 * i + 2)),
name_scope='bottleneck2_{}'.format(str(4 * i + 4)))
return net, inputs_shape_2
......@@ -320,51 +381,105 @@ def ENet_stage3(inputs, name_scope='stage3_block'):
with scope(name_scope):
for i in range(2):
with scope('bottleneck3_{}'.format(str(4 * i + 0))):
net = bottleneck(inputs, output_depth=128, filter_size=3, regularizer_prob=0.1,
net = bottleneck(
inputs,
output_depth=128,
filter_size=3,
regularizer_prob=0.1,
name_scope='bottleneck3_{}'.format(str(4 * i + 0)))
with scope('bottleneck3_{}'.format(str(4 * i + 1))):
net = bottleneck(net, output_depth=128, filter_size=3, regularizer_prob=0.1, type=DILATED, dilation_rate=(2 ** (2*i+1)),
net = bottleneck(
net,
output_depth=128,
filter_size=3,
regularizer_prob=0.1,
type=DILATED,
dilation_rate=(2**(2 * i + 1)),
name_scope='bottleneck3_{}'.format(str(4 * i + 1)))
with scope('bottleneck3_{}'.format(str(4 * i + 2))):
net = bottleneck(net, output_depth=128, filter_size=5, regularizer_prob=0.1, type=ASYMMETRIC,
net = bottleneck(
net,
output_depth=128,
filter_size=5,
regularizer_prob=0.1,
type=ASYMMETRIC,
name_scope='bottleneck3_{}'.format(str(4 * i + 2)))
with scope('bottleneck3_{}'.format(str(4 * i + 3))):
net = bottleneck(net, output_depth=128, filter_size=3, regularizer_prob=0.1, type=DILATED, dilation_rate=(2 ** (2*i+2)),
net = bottleneck(
net,
output_depth=128,
filter_size=3,
regularizer_prob=0.1,
type=DILATED,
dilation_rate=(2**(2 * i + 2)),
name_scope='bottleneck3_{}'.format(str(4 * i + 3)))
return net
def ENet_stage4(inputs, inputs_shape, connect_tensor,
skip_connections=True, name_scope='stage4_block'):
def ENet_stage4(inputs,
inputs_shape,
connect_tensor,
skip_connections=True,
name_scope='stage4_block'):
with scope(name_scope):
with scope('bottleneck4_0'):
net = bottleneck(inputs, output_depth=64, filter_size=3, regularizer_prob=0.1,
type=UPSAMPLING, decoder=True, output_shape=inputs_shape,
net = bottleneck(
inputs,
output_depth=64,
filter_size=3,
regularizer_prob=0.1,
type=UPSAMPLING,
decoder=True,
output_shape=inputs_shape,
name_scope='bottleneck4_0')
if skip_connections:
net = fluid.layers.elementwise_add(net, connect_tensor)
with scope('bottleneck4_1'):
net = bottleneck(net, output_depth=64, filter_size=3, regularizer_prob=0.1, decoder=True,
net = bottleneck(
net,
output_depth=64,
filter_size=3,
regularizer_prob=0.1,
decoder=True,
name_scope='bottleneck4_1')
with scope('bottleneck4_2'):
net = bottleneck(net, output_depth=64, filter_size=3, regularizer_prob=0.1, decoder=True,
net = bottleneck(
net,
output_depth=64,
filter_size=3,
regularizer_prob=0.1,
decoder=True,
name_scope='bottleneck4_2')
return net
def ENet_stage5(inputs, inputs_shape, connect_tensor, skip_connections=True,
def ENet_stage5(inputs,
inputs_shape,
connect_tensor,
skip_connections=True,
name_scope='stage5_block'):
with scope(name_scope):
net = bottleneck(inputs, output_depth=16, filter_size=3, regularizer_prob=0.1, type=UPSAMPLING,
decoder=True, output_shape=inputs_shape,
net = bottleneck(
inputs,
output_depth=16,
filter_size=3,
regularizer_prob=0.1,
type=UPSAMPLING,
decoder=True,
output_shape=inputs_shape,
name_scope='bottleneck5_0')
if skip_connections:
net = fluid.layers.elementwise_add(net, connect_tensor)
with scope('bottleneck5_1'):
net = bottleneck(net, output_depth=16, filter_size=3, regularizer_prob=0.1, decoder=True,
net = bottleneck(
net,
output_depth=16,
filter_size=3,
regularizer_prob=0.1,
decoder=True,
name_scope='bottleneck5_1')
return net
......@@ -378,14 +493,16 @@ def decoder(input, num_classes):
segStage3 = ENet_stage3(stage2)
segStage4 = ENet_stage4(segStage3, inputs_shape_2, stage1)
segStage5 = ENet_stage5(segStage4, inputs_shape_1, initial)
segLogits = deconv(segStage5, num_classes, filter_size=2, stride=2, padding='SAME')
segLogits = deconv(
segStage5, num_classes, filter_size=2, stride=2, padding='SAME')
# Embedding branch
with scope('LaneNetEm'):
emStage3 = ENet_stage3(stage2)
emStage4 = ENet_stage4(emStage3, inputs_shape_2, stage1)
emStage5 = ENet_stage5(emStage4, inputs_shape_1, initial)
emLogits = deconv(emStage5, 4, filter_size=2, stride=2, padding='SAME')
emLogits = deconv(
emStage5, 4, filter_size=2, stride=2, padding='SAME')
elif 'vgg' in cfg.MODEL.LANENET.BACKBONE:
encoder_list = ['pool5', 'pool4', 'pool3']
......@@ -396,14 +513,16 @@ def decoder(input, num_classes):
encoder_list = encoder_list[1:]
for i in range(len(encoder_list)):
with scope('deconv_{:d}'.format(i + 1)):
deconv_out = deconv(score, 64, filter_size=4, stride=2, padding='SAME')
deconv_out = deconv(
score, 64, filter_size=4, stride=2, padding='SAME')
input_tensor = input[encoder_list[i]]
with scope('score_{:d}'.format(i + 1)):
score = conv(input_tensor, 64, 1)
score = fluid.layers.elementwise_add(deconv_out, score)
with scope('deconv_final'):
emLogits = deconv(score, 64, filter_size=16, stride=8, padding='SAME')
emLogits = deconv(
score, 64, filter_size=16, stride=8, padding='SAME')
with scope('score_final'):
segLogits = conv(emLogits, num_classes, 1)
emLogits = relu(conv(emLogits, 4, 1))
......@@ -415,7 +534,8 @@ def encoder(input):
model = vgg_backbone(layers=16)
#output = model.net(input)
_, encode_feature_dict = model.net(input, end_points=13, decode_points=[7, 10, 13])
_, encode_feature_dict = model.net(
input, end_points=13, decode_points=[7, 10, 13])
output = {}
output['pool3'] = encode_feature_dict[7]
output['pool4'] = encode_feature_dict[10]
......@@ -427,8 +547,9 @@ def encoder(input):
stage2, inputs_shape_2 = ENet_stage2(stage1)
output = (initial, stage1, stage2, inputs_shape_1, inputs_shape_2)
else:
raise Exception("LaneNet expect enet and vgg backbone, but received {}".
format(cfg.MODEL.LANENET.BACKBONE))
raise Exception(
"LaneNet expect enet and vgg backbone, but received {}".format(
cfg.MODEL.LANENET.BACKBONE))
return output
......
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -58,7 +58,8 @@ class LaneNetDataset():
if self.shuffle and cfg.NUM_TRAINERS > 1:
np.random.RandomState(self.shuffle_seed).shuffle(self.all_lines)
num_lines = len(self.all_lines) // cfg.NUM_TRAINERS
self.lines = self.all_lines[num_lines * cfg.TRAINER_ID: num_lines * (cfg.TRAINER_ID + 1)]
self.lines = self.all_lines[num_lines * cfg.TRAINER_ID:num_lines *
(cfg.TRAINER_ID + 1)]
self.shuffle_seed += 1
elif self.shuffle:
np.random.shuffle(self.lines)
......@@ -86,7 +87,8 @@ class LaneNetDataset():
if self.shuffle and cfg.NUM_TRAINERS > 1:
np.random.RandomState(self.shuffle_seed).shuffle(self.all_lines)
num_lines = len(self.all_lines) // self.num_trainers
self.lines = self.all_lines[num_lines * self.trainer_id: num_lines * (self.trainer_id + 1)]
self.lines = self.all_lines[num_lines * self.trainer_id:num_lines *
(self.trainer_id + 1)]
self.shuffle_seed += 1
elif self.shuffle:
np.random.shuffle(self.lines)
......@@ -118,7 +120,8 @@ class LaneNetDataset():
def batch_reader(is_test=False, drop_last=drop_last):
if is_test:
imgs, grts, grts_instance, img_names, valid_shapes, org_shapes = [], [], [], [], [], []
for img, grt, grt_instance, img_name, valid_shape, org_shape in reader():
for img, grt, grt_instance, img_name, valid_shape, org_shape in reader(
):
imgs.append(img)
grts.append(grt)
grts_instance.append(grt_instance)
......@@ -126,13 +129,14 @@ class LaneNetDataset():
valid_shapes.append(valid_shape)
org_shapes.append(org_shape)
if len(imgs) == batch_size:
yield np.array(imgs), np.array(
grts), np.array(grts_instance), img_names, np.array(valid_shapes), np.array(
org_shapes)
yield np.array(imgs), np.array(grts), np.array(
grts_instance), img_names, np.array(
valid_shapes), np.array(org_shapes)
imgs, grts, grts_instance, img_names, valid_shapes, org_shapes = [], [], [], [], [], []
if not drop_last and len(imgs) > 0:
yield np.array(imgs), np.array(grts), np.array(grts_instance), img_names, np.array(
yield np.array(imgs), np.array(grts), np.array(
grts_instance), img_names, np.array(
valid_shapes), np.array(org_shapes)
else:
imgs, labs, labs_instance, ignore = [], [], [], []
......@@ -144,12 +148,14 @@ class LaneNetDataset():
ignore.append(ig)
bs += 1
if bs == batch_size:
yield np.array(imgs), np.array(labs), np.array(labs_instance), np.array(ignore)
yield np.array(imgs), np.array(labs), np.array(
labs_instance), np.array(ignore)
bs = 0
imgs, labs, labs_instance, ignore = [], [], [], []
if not drop_last and bs > 0:
yield np.array(imgs), np.array(labs), np.array(labs_instance), np.array(ignore)
yield np.array(imgs), np.array(labs), np.array(
labs_instance), np.array(ignore)
return batch_reader(is_test, drop_last)
......@@ -299,10 +305,12 @@ class LaneNetDataset():
img, grt = aug.rand_crop(img, grt, mode=mode)
elif ModelPhase.is_eval(mode):
img, grt, grt_instance = aug.resize(img, grt, grt_instance, mode=mode)
img, grt, grt_instance = aug.resize(
img, grt, grt_instance, mode=mode)
elif ModelPhase.is_visual(mode):
ori_img = img.copy()
img, grt, grt_instance = aug.resize(img, grt, grt_instance, mode=mode)
img, grt, grt_instance = aug.resize(
img, grt, grt_instance, mode=mode)
valid_shape = [img.shape[0], img.shape[1]]
else:
raise ValueError("Dataset mode={} Error!".format(mode))
......
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -40,10 +40,10 @@ from pdseg.utils.timer import Timer, calculate_eta
from reader import LaneNetDataset
from models.model_builder import build_model
from models.model_builder import ModelPhase
from models.model_builder import parse_shape_from_file
from eval import evaluate
from vis import visualize
from utils import dist_utils
from utils.load_model_utils import load_pretrained_weights
def parse_args():
......@@ -101,37 +101,6 @@ def parse_args():
return parser.parse_args()
def save_vars(executor, dirname, program=None, vars=None):
"""
Temporary resolution for Win save variables compatability.
Will fix in PaddlePaddle v1.5.2
"""
save_program = fluid.Program()
save_block = save_program.global_block()
for each_var in vars:
# NOTE: don't save the variable which type is RAW
if each_var.type == fluid.core.VarDesc.VarType.RAW:
continue
new_var = save_block.create_var(
name=each_var.name,
shape=each_var.shape,
dtype=each_var.dtype,
type=each_var.type,
lod_level=each_var.lod_level,
persistable=True)
file_path = os.path.join(dirname, new_var.name)
file_path = os.path.normpath(file_path)
save_block.append_op(
type='save',
inputs={'X': [new_var]},
outputs={},
attrs={'file_path': file_path})
executor.run(save_program)
def save_checkpoint(exe, program, ckpt_name):
"""
Save checkpoint for evaluation or resume training
......@@ -141,29 +110,22 @@ def save_checkpoint(exe, program, ckpt_name):
if not os.path.isdir(ckpt_dir):
os.makedirs(ckpt_dir)
save_vars(
exe,
ckpt_dir,
program,
vars=list(filter(fluid.io.is_persistable, program.list_vars())))
fluid.save(program, os.path.join(ckpt_dir, 'model'))
return ckpt_dir
def load_checkpoint(exe, program):
"""
Load checkpoiont from pretrained model directory for resume training
Load checkpoiont for resuming training
"""
print('Resume model training from:', cfg.TRAIN.RESUME_MODEL_DIR)
if not os.path.exists(cfg.TRAIN.RESUME_MODEL_DIR):
raise ValueError("TRAIN.PRETRAIN_MODEL {} not exist!".format(
cfg.TRAIN.RESUME_MODEL_DIR))
fluid.io.load_persistables(
exe, cfg.TRAIN.RESUME_MODEL_DIR, main_program=program)
model_path = cfg.TRAIN.RESUME_MODEL_DIR
print('Resume model training from:', model_path)
if not os.path.exists(model_path):
raise ValueError(
"TRAIN.PRETRAIN_MODEL {} not exist!".format(model_path))
fluid.load(program, os.path.join(model_path, 'model'), exe)
# Check is path ended by path spearator
if model_path[-1] == os.sep:
model_path = model_path[0:-1]
......@@ -178,7 +140,6 @@ def load_checkpoint(exe, program):
else:
raise ValueError("Resume model path is not valid!")
print("Model checkpoint loaded successfully!")
return begin_epoch
......@@ -271,44 +232,7 @@ def train(cfg):
begin_epoch = load_checkpoint(exe, train_prog)
# Load pretrained model
elif os.path.exists(cfg.TRAIN.PRETRAINED_MODEL_DIR):
print_info('Pretrained model dir: ', cfg.TRAIN.PRETRAINED_MODEL_DIR)
load_vars = []
load_fail_vars = []
def var_shape_matched(var, shape):
"""
Check whehter persitable variable shape is match with current network
"""
var_exist = os.path.exists(
os.path.join(cfg.TRAIN.PRETRAINED_MODEL_DIR, var.name))
if var_exist:
var_shape = parse_shape_from_file(
os.path.join(cfg.TRAIN.PRETRAINED_MODEL_DIR, var.name))
if var_shape != shape:
print(var.name, var_shape, shape)
return var_shape == shape
return False
for x in train_prog.list_vars():
if isinstance(x, fluid.framework.Parameter):
shape = tuple(fluid.global_scope().find_var(
x.name).get_tensor().shape())
if var_shape_matched(x, shape):
load_vars.append(x)
else:
load_fail_vars.append(x)
fluid.io.load_vars(
exe, dirname=cfg.TRAIN.PRETRAINED_MODEL_DIR, vars=load_vars)
for var in load_vars:
print_info("Parameter[{}] loaded sucessfully!".format(var.name))
for var in load_fail_vars:
print_info(
"Parameter[{}] don't exist or shape does not match current network, skip"
" to load it.".format(var.name))
print_info("{}/{} pretrained parameters loaded successfully!".format(
len(load_vars),
len(load_vars) + len(load_fail_vars)))
load_pretrained_weights(exe, train_prog, cfg.TRAIN.PRETRAINED_MODEL_DIR)
else:
print_info(
'Pretrained model dir {} not exists, training from scratch...'.
......@@ -393,8 +317,7 @@ def train(cfg):
avg_emb_loss, avg_acc, avg_fp, avg_fn, speed,
calculate_eta(all_step - step, speed)))
if args.use_vdl:
log_writer.add_scalar('Train/loss', avg_loss,
step)
log_writer.add_scalar('Train/loss', avg_loss, step)
log_writer.add_scalar('Train/lr', lr[0], step)
log_writer.add_scalar('Train/speed', speed, step)
sys.stdout.flush()
......@@ -423,8 +346,7 @@ def train(cfg):
use_gpu=args.use_gpu,
use_mpio=args.use_mpio)
if args.use_vdl:
log_writer.add_scalar('Evaluate/accuracy', accuracy,
step)
log_writer.add_scalar('Evaluate/accuracy', accuracy, step)
log_writer.add_scalar('Evaluate/fp', fp, step)
log_writer.add_scalar('Evaluate/fn', fn, step)
......
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# -*- coding: utf-8 -*-
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
......@@ -81,7 +81,7 @@ cfg.DATASET.SEPARATOR = ' '
# 忽略的像素标签值, 默认为255,一般无需改动
cfg.DATASET.IGNORE_INDEX = 255
# 数据增强是图像的padding值
cfg.DATASET.PADDING_VALUE = [127.5,127.5,127.5]
cfg.DATASET.PADDING_VALUE = [127.5, 127.5, 127.5]
########################### 数据增强配置 ######################################
# 图像镜像左右翻转
......
#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
......
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
generate tusimple training dataset
"""
......@@ -14,12 +28,16 @@ import numpy as np
def init_args():
parser = argparse.ArgumentParser()
parser.add_argument('--src_dir', type=str, help='The origin path of unzipped tusimple dataset')
parser.add_argument(
'--src_dir',
type=str,
help='The origin path of unzipped tusimple dataset')
return parser.parse_args()
def process_json_file(json_file_path, src_dir, ori_dst_dir, binary_dst_dir, instance_dst_dir):
def process_json_file(json_file_path, src_dir, ori_dst_dir, binary_dst_dir,
instance_dst_dir):
assert ops.exists(json_file_path), '{:s} not exist'.format(json_file_path)
......@@ -39,11 +57,14 @@ def process_json_file(json_file_path, src_dir, ori_dst_dir, binary_dst_dir, inst
h_samples = info_dict['h_samples']
lanes = info_dict['lanes']
image_name_new = '{:s}.png'.format('{:d}'.format(line_index + image_nums).zfill(4))
image_name_new = '{:s}.png'.format(
'{:d}'.format(line_index + image_nums).zfill(4))
src_image = cv2.imread(image_path, cv2.IMREAD_COLOR)
dst_binary_image = np.zeros([src_image.shape[0], src_image.shape[1]], np.uint8)
dst_instance_image = np.zeros([src_image.shape[0], src_image.shape[1]], np.uint8)
dst_binary_image = np.zeros(
[src_image.shape[0], src_image.shape[1]], np.uint8)
dst_instance_image = np.zeros(
[src_image.shape[0], src_image.shape[1]], np.uint8)
for lane_index, lane in enumerate(lanes):
assert len(h_samples) == len(lane)
......@@ -62,13 +83,23 @@ def process_json_file(json_file_path, src_dir, ori_dst_dir, binary_dst_dir, inst
lane_pts = np.vstack((lane_x, lane_y)).transpose()
lane_pts = np.array([lane_pts], np.int64)
cv2.polylines(dst_binary_image, lane_pts, isClosed=False,
color=255, thickness=5)
cv2.polylines(dst_instance_image, lane_pts, isClosed=False,
color=lane_index * 50 + 20, thickness=5)
dst_binary_image_path = ops.join(src_dir, binary_dst_dir, image_name_new)
dst_instance_image_path = ops.join(src_dir, instance_dst_dir, image_name_new)
cv2.polylines(
dst_binary_image,
lane_pts,
isClosed=False,
color=255,
thickness=5)
cv2.polylines(
dst_instance_image,
lane_pts,
isClosed=False,
color=lane_index * 50 + 20,
thickness=5)
dst_binary_image_path = ops.join(src_dir, binary_dst_dir,
image_name_new)
dst_instance_image_path = ops.join(src_dir, instance_dst_dir,
image_name_new)
dst_rgb_image_path = ops.join(src_dir, ori_dst_dir, image_name_new)
cv2.imwrite(dst_binary_image_path, dst_binary_image)
......@@ -78,7 +109,12 @@ def process_json_file(json_file_path, src_dir, ori_dst_dir, binary_dst_dir, inst
print('Process {:s} success'.format(image_name))
def gen_sample(src_dir, b_gt_image_dir, i_gt_image_dir, image_dir, phase='train', split=False):
def gen_sample(src_dir,
b_gt_image_dir,
i_gt_image_dir,
image_dir,
phase='train',
split=False):
label_list = []
with open('{:s}/{}ing/{}.txt'.format(src_dir, phase, phase), 'w') as file:
......@@ -92,7 +128,8 @@ def gen_sample(src_dir, b_gt_image_dir, i_gt_image_dir, image_dir, phase='train'
image_path = ops.join(image_dir, image_name)
assert ops.exists(image_path), '{:s} not exist'.format(image_path)
assert ops.exists(instance_gt_image_path), '{:s} not exist'.format(instance_gt_image_path)
assert ops.exists(instance_gt_image_path), '{:s} not exist'.format(
instance_gt_image_path)
b_gt_image = cv2.imread(binary_gt_image_path, cv2.IMREAD_COLOR)
i_gt_image = cv2.imread(instance_gt_image_path, cv2.IMREAD_COLOR)
......@@ -102,7 +139,8 @@ def gen_sample(src_dir, b_gt_image_dir, i_gt_image_dir, image_dir, phase='train'
print('image: {:s} corrupt'.format(image_name))
continue
else:
info = '{:s} {:s} {:s}'.format(image_path, binary_gt_image_path, instance_gt_image_path)
info = '{:s} {:s} {:s}'.format(image_path, binary_gt_image_path,
instance_gt_image_path)
file.write(info + '\n')
label_list.append(info)
if phase == 'train' and split:
......@@ -110,10 +148,12 @@ def gen_sample(src_dir, b_gt_image_dir, i_gt_image_dir, image_dir, phase='train'
val_list_len = len(label_list) // 10
val_label_list = label_list[:val_list_len]
train_label_list = label_list[val_list_len:]
with open('{:s}/{}ing/train_part.txt'.format(src_dir, phase, phase), 'w') as file:
with open('{:s}/{}ing/train_part.txt'.format(src_dir, phase, phase),
'w') as file:
for info in train_label_list:
file.write(info + '\n')
with open('{:s}/{}ing/val_part.txt'.format(src_dir, phase, phase), 'w') as file:
with open('{:s}/{}ing/val_part.txt'.format(src_dir, phase, phase),
'w') as file:
for info in val_label_list:
file.write(info + '\n')
return
......@@ -130,12 +170,14 @@ def process_tusimple_dataset(src_dir):
for json_label_path in glob.glob('{:s}/label*.json'.format(src_dir)):
json_label_name = ops.split(json_label_path)[1]
shutil.copyfile(json_label_path, ops.join(traing_folder_path, json_label_name))
shutil.copyfile(json_label_path,
ops.join(traing_folder_path, json_label_name))
for json_label_path in glob.glob('{:s}/test_label.json'.format(src_dir)):
json_label_name = ops.split(json_label_path)[1]
shutil.copyfile(json_label_path, ops.join(testing_folder_path, json_label_name))
shutil.copyfile(json_label_path,
ops.join(testing_folder_path, json_label_name))
train_gt_image_dir = ops.join('training', 'gt_image')
train_gt_binary_dir = ops.join('training', 'gt_binary_image')
......@@ -154,9 +196,11 @@ def process_tusimple_dataset(src_dir):
os.makedirs(os.path.join(src_dir, test_gt_instance_dir), exist_ok=True)
for json_label_path in glob.glob('{:s}/*.json'.format(traing_folder_path)):
process_json_file(json_label_path, src_dir, train_gt_image_dir, train_gt_binary_dir, train_gt_instance_dir)
process_json_file(json_label_path, src_dir, train_gt_image_dir,
train_gt_binary_dir, train_gt_instance_dir)
gen_sample(src_dir, train_gt_binary_dir, train_gt_instance_dir, train_gt_image_dir, 'train', True)
gen_sample(src_dir, train_gt_binary_dir, train_gt_instance_dir,
train_gt_image_dir, 'train', True)
if __name__ == '__main__':
......
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this code heavily base on https://github.com/MaybeShewill-CV/lanenet-lane-detection/blob/master/lanenet_model/lanenet_postprocess.py
"""
LaneNet model post process
......@@ -22,12 +35,14 @@ def _morphological_process(image, kernel_size=5):
:return:
"""
if len(image.shape) == 3:
raise ValueError('Binary segmentation result image should be a single channel image')
raise ValueError(
'Binary segmentation result image should be a single channel image')
if image.dtype is not np.uint8:
image = np.array(image, np.uint8)
kernel = cv2.getStructuringElement(shape=cv2.MORPH_ELLIPSE, ksize=(kernel_size, kernel_size))
kernel = cv2.getStructuringElement(
shape=cv2.MORPH_ELLIPSE, ksize=(kernel_size, kernel_size))
# close operation fille hole
closing = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernel, iterations=1)
......@@ -46,13 +61,15 @@ def _connect_components_analysis(image):
else:
gray_image = image
return cv2.connectedComponentsWithStats(gray_image, connectivity=8, ltype=cv2.CV_32S)
return cv2.connectedComponentsWithStats(
gray_image, connectivity=8, ltype=cv2.CV_32S)
class _LaneFeat(object):
"""
"""
def __init__(self, feat, coord, class_id=-1):
"""
lane feat object
......@@ -108,18 +125,21 @@ class _LaneNetCluster(object):
"""
Instance segmentation result cluster
"""
def __init__(self):
"""
"""
self._color_map = [np.array([255, 0, 0]),
self._color_map = [
np.array([255, 0, 0]),
np.array([0, 255, 0]),
np.array([0, 0, 255]),
np.array([125, 125, 0]),
np.array([0, 125, 125]),
np.array([125, 0, 125]),
np.array([50, 100, 50]),
np.array([100, 50, 100])]
np.array([100, 50, 100])
]
@staticmethod
def _embedding_feats_dbscan_cluster(embedding_image_feats):
......@@ -186,15 +206,16 @@ class _LaneNetCluster(object):
# get embedding feats and coords
get_lane_embedding_feats_result = self._get_lane_embedding_feats(
binary_seg_ret=binary_seg_result,
instance_seg_ret=instance_seg_result
)
instance_seg_ret=instance_seg_result)
# dbscan cluster
dbscan_cluster_result = self._embedding_feats_dbscan_cluster(
embedding_image_feats=get_lane_embedding_feats_result['lane_embedding_feats']
)
embedding_image_feats=get_lane_embedding_feats_result[
'lane_embedding_feats'])
mask = np.zeros(shape=[binary_seg_result.shape[0], binary_seg_result.shape[1], 3], dtype=np.uint8)
mask = np.zeros(
shape=[binary_seg_result.shape[0], binary_seg_result.shape[1], 3],
dtype=np.uint8)
db_labels = dbscan_cluster_result['db_labels']
unique_labels = dbscan_cluster_result['unique_labels']
coord = get_lane_embedding_feats_result['lane_coordinates']
......@@ -219,11 +240,13 @@ class LaneNetPostProcessor(object):
"""
lanenet post process for lane generation
"""
def __init__(self, ipm_remap_file_path='./utils/tusimple_ipm_remap.yml'):
"""
convert front car view to bird view
"""
assert ops.exists(ipm_remap_file_path), '{:s} not exist'.format(ipm_remap_file_path)
assert ops.exists(ipm_remap_file_path), '{:s} not exist'.format(
ipm_remap_file_path)
self._cluster = _LaneNetCluster()
self._ipm_remap_file_path = ipm_remap_file_path
......@@ -232,14 +255,16 @@ class LaneNetPostProcessor(object):
self._remap_to_ipm_x = remap_file_load_ret['remap_to_ipm_x']
self._remap_to_ipm_y = remap_file_load_ret['remap_to_ipm_y']
self._color_map = [np.array([255, 0, 0]),
self._color_map = [
np.array([255, 0, 0]),
np.array([0, 255, 0]),
np.array([0, 0, 255]),
np.array([125, 125, 0]),
np.array([0, 125, 125]),
np.array([125, 0, 125]),
np.array([50, 100, 50]),
np.array([100, 50, 100])]
np.array([100, 50, 100])
]
def _load_remap_matrix(self):
fs = cv2.FileStorage(self._ipm_remap_file_path, cv2.FILE_STORAGE_READ)
......@@ -256,15 +281,20 @@ class LaneNetPostProcessor(object):
return ret
def postprocess(self, binary_seg_result, instance_seg_result=None,
min_area_threshold=100, source_image=None,
def postprocess(self,
binary_seg_result,
instance_seg_result=None,
min_area_threshold=100,
source_image=None,
data_source='tusimple'):
# convert binary_seg_result
binary_seg_result = np.array(binary_seg_result * 255, dtype=np.uint8)
# apply image morphology operation to fill in the hold and reduce the small area
morphological_ret = _morphological_process(binary_seg_result, kernel_size=5)
connect_components_analysis_ret = _connect_components_analysis(image=morphological_ret)
morphological_ret = _morphological_process(
binary_seg_result, kernel_size=5)
connect_components_analysis_ret = _connect_components_analysis(
image=morphological_ret)
labels = connect_components_analysis_ret[1]
stats = connect_components_analysis_ret[2]
......@@ -276,8 +306,7 @@ class LaneNetPostProcessor(object):
# apply embedding features cluster
mask_image, lane_coords = self._cluster.apply_lane_feats_cluster(
binary_seg_result=morphological_ret,
instance_seg_result=instance_seg_result
)
instance_seg_result=instance_seg_result)
if mask_image is None:
return {
......@@ -292,15 +321,15 @@ class LaneNetPostProcessor(object):
for lane_index, coords in enumerate(lane_coords):
if data_source == 'tusimple':
tmp_mask = np.zeros(shape=(720, 1280), dtype=np.uint8)
tmp_mask[tuple((np.int_(coords[:, 1] * 720 / 256), np.int_(coords[:, 0] * 1280 / 512)))] = 255
tmp_mask[tuple((np.int_(coords[:, 1] * 720 / 256),
np.int_(coords[:, 0] * 1280 / 512)))] = 255
else:
raise ValueError('Wrong data source now only support tusimple')
tmp_ipm_mask = cv2.remap(
tmp_mask,
self._remap_to_ipm_x,
self._remap_to_ipm_y,
interpolation=cv2.INTER_NEAREST
)
interpolation=cv2.INTER_NEAREST)
nonzero_y = np.array(tmp_ipm_mask.nonzero()[0])
nonzero_x = np.array(tmp_ipm_mask.nonzero()[1])
......@@ -309,16 +338,19 @@ class LaneNetPostProcessor(object):
[ipm_image_height, ipm_image_width] = tmp_ipm_mask.shape
plot_y = np.linspace(10, ipm_image_height, ipm_image_height - 10)
fit_x = fit_param[0] * plot_y ** 2 + fit_param[1] * plot_y + fit_param[2]
fit_x = fit_param[0] * plot_y**2 + fit_param[
1] * plot_y + fit_param[2]
lane_pts = []
for index in range(0, plot_y.shape[0], 5):
src_x = self._remap_to_ipm_x[
int(plot_y[index]), int(np.clip(fit_x[index], 0, ipm_image_width - 1))]
int(plot_y[index]),
int(np.clip(fit_x[index], 0, ipm_image_width - 1))]
if src_x <= 0:
continue
src_y = self._remap_to_ipm_y[
int(plot_y[index]), int(np.clip(fit_x[index], 0, ipm_image_width - 1))]
int(plot_y[index]),
int(np.clip(fit_x[index], 0, ipm_image_width - 1))]
src_y = src_y if src_y > 0 else 0
lane_pts.append([src_x, src_y])
......@@ -366,8 +398,10 @@ class LaneNetPostProcessor(object):
continue
lane_color = self._color_map[index].tolist()
cv2.circle(source_image, (int(interpolation_src_pt_x),
int(interpolation_src_pt_y)), 5, lane_color, -1)
cv2.circle(
source_image,
(int(interpolation_src_pt_x), int(interpolation_src_pt_y)),
5, lane_color, -1)
ret = {
'mask_image': mask_image,
'fit_params': fit_params,
......
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import os.path as osp
import six
import numpy as np
def parse_param_file(param_file, return_shape=True):
from paddle.fluid.proto.framework_pb2 import VarType
f = open(param_file, 'rb')
version = np.fromstring(f.read(4), dtype='int32')
lod_level = np.fromstring(f.read(8), dtype='int64')
for i in range(int(lod_level)):
_size = np.fromstring(f.read(8), dtype='int64')
_ = f.read(_size)
version = np.fromstring(f.read(4), dtype='int32')
tensor_desc = VarType.TensorDesc()
tensor_desc_size = np.fromstring(f.read(4), dtype='int32')
tensor_desc.ParseFromString(f.read(int(tensor_desc_size)))
tensor_shape = tuple(tensor_desc.dims)
if return_shape:
f.close()
return tuple(tensor_desc.dims)
if tensor_desc.data_type != 5:
raise Exception(
"Unexpected data type while parse {}".format(param_file))
data_size = 4
for i in range(len(tensor_shape)):
data_size *= tensor_shape[i]
weight = np.fromstring(f.read(data_size), dtype='float32')
f.close()
return np.reshape(weight, tensor_shape)
def load_pdparams(exe, main_prog, model_dir):
import paddle.fluid as fluid
from paddle.fluid.proto.framework_pb2 import VarType
from paddle.fluid.framework import Program
vars_to_load = list()
vars_not_load = list()
import pickle
with open(osp.join(model_dir, 'model.pdparams'), 'rb') as f:
params_dict = pickle.load(f) if six.PY2 else pickle.load(
f, encoding='latin1')
unused_vars = list()
for var in main_prog.list_vars():
if not isinstance(var, fluid.framework.Parameter):
continue
if var.name not in params_dict:
print("{} is not in saved model".format(var.name))
vars_not_load.append(var.name)
continue
if var.shape != params_dict[var.name].shape:
unused_vars.append(var.name)
vars_not_load.append(var.name)
print(
"[SKIP] Shape of pretrained weight {} doesn't match.(Pretrained: {}, Actual: {})"
.format(var.name, params_dict[var.name].shape, var.shape))
continue
vars_to_load.append(var)
for var_name in unused_vars:
del params_dict[var_name]
fluid.io.set_program_state(main_prog, params_dict)
if len(vars_to_load) == 0:
print(
"There is no pretrain weights loaded, maybe you should check you pretrain model!"
)
else:
print("There are {}/{} varaibles in {} are loaded.".format(
len(vars_to_load),
len(vars_to_load) + len(vars_not_load), model_dir))
def load_pretrained_weights(exe, main_prog, weights_dir):
if not osp.exists(weights_dir):
raise Exception("Path {} not exists.".format(weights_dir))
if osp.exists(osp.join(weights_dir, "model.pdparams")):
return load_pdparams(exe, main_prog, weights_dir)
import paddle.fluid as fluid
vars_to_load = list()
vars_not_load = list()
for var in main_prog.list_vars():
if not isinstance(var, fluid.framework.Parameter):
continue
if not osp.exists(osp.join(weights_dir, var.name)):
print("[SKIP] Pretrained weight {}/{} doesn't exist".format(
weights_dir, var.name))
vars_not_load.append(var)
continue
pretrained_shape = parse_param_file(osp.join(weights_dir, var.name))
actual_shape = tuple(var.shape)
if pretrained_shape != actual_shape:
print(
"[SKIP] Shape of pretrained weight {}/{} doesn't match.(Pretrained: {}, Actual: {})"
.format(weights_dir, var.name, pretrained_shape, actual_shape))
vars_not_load.append(var)
continue
vars_to_load.append(var)
params_dict = fluid.io.load_program_state(
weights_dir, var_list=vars_to_load)
fluid.io.set_program_state(main_prog, params_dict)
if len(vars_to_load) == 0:
print(
"There is no pretrain weights loaded, maybe you should check you pretrain model!"
)
else:
print("There are {}/{} varaibles in {} are loaded.".format(
len(vars_to_load),
len(vars_to_load) + len(vars_not_load), weights_dir))
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -45,6 +45,7 @@ from models.model_builder import ModelPhase
from utils import lanenet_postprocess
import matplotlib.pyplot as plt
def parse_args():
parser = argparse.ArgumentParser(description='PaddeSeg visualization tools')
parser.add_argument(
......@@ -106,7 +107,6 @@ def minmax_scale(input_arr):
return output_arr
def visualize(cfg,
vis_file_list=None,
use_gpu=False,
......@@ -119,7 +119,6 @@ def visualize(cfg,
if vis_file_list is None:
vis_file_list = cfg.DATASET.TEST_FILE_LIST
dataset = LaneNetDataset(
file_list=vis_file_list,
mode=ModelPhase.VISUAL,
......@@ -139,6 +138,11 @@ def visualize(cfg,
ckpt_dir = cfg.TEST.TEST_MODEL if not ckpt_dir else ckpt_dir
if ckpt_dir is not None:
print('load test model:', ckpt_dir)
try:
fluid.load(test_prog, os.path.join(ckpt_dir, 'model'), exe)
except:
fluid.io.load_params(exe, ckpt_dir, main_program=test_prog)
save_dir = os.path.join(vis_dir, 'visual_results')
......@@ -161,22 +165,26 @@ def visualize(cfg,
for i in range(num_imgs):
gt_image = org_imgs[i]
binary_seg_image, instance_seg_image = segLogits[i].squeeze(-1), emLogits[i].transpose((1,2,0))
binary_seg_image, instance_seg_image = segLogits[i].squeeze(
-1), emLogits[i].transpose((1, 2, 0))
postprocess_result = postprocessor.postprocess(
binary_seg_result=binary_seg_image,
instance_seg_result=instance_seg_image,
source_image=gt_image
)
pred_binary_fn = os.path.join(save_dir, to_png_fn(img_names[i], name='_pred_binary'))
pred_lane_fn = os.path.join(save_dir, to_png_fn(img_names[i], name='_pred_lane'))
pred_instance_fn = os.path.join(save_dir, to_png_fn(img_names[i], name='_pred_instance'))
source_image=gt_image)
pred_binary_fn = os.path.join(
save_dir, to_png_fn(img_names[i], name='_pred_binary'))
pred_lane_fn = os.path.join(
save_dir, to_png_fn(img_names[i], name='_pred_lane'))
pred_instance_fn = os.path.join(
save_dir, to_png_fn(img_names[i], name='_pred_instance'))
dirname = os.path.dirname(pred_binary_fn)
makedirs(dirname)
mask_image = postprocess_result['mask_image']
for i in range(4):
instance_seg_image[:, :, i] = minmax_scale(instance_seg_image[:, :, i])
instance_seg_image[:, :, i] = minmax_scale(
instance_seg_image[:, :, i])
embedding_image = np.array(instance_seg_image).astype(np.uint8)
plt.figure('mask_image')
......@@ -189,13 +197,13 @@ def visualize(cfg,
plt.imshow(binary_seg_image * 255, cmap='gray')
plt.show()
cv2.imwrite(pred_binary_fn, np.array(binary_seg_image * 255).astype(np.uint8))
cv2.imwrite(pred_binary_fn,
np.array(binary_seg_image * 255).astype(np.uint8))
cv2.imwrite(pred_lane_fn, postprocess_result['source_image'])
cv2.imwrite(pred_instance_fn, mask_image)
print(pred_lane_fn, 'saved!')
if __name__ == '__main__':
args = parse_args()
if args.cfg_file is not None:
......
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
......
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
......@@ -23,7 +24,8 @@ from test_utils import download_file_and_uncompress
if __name__ == "__main__":
download_file_and_uncompress(
url='https://paddleseg.bj.bcebos.com/models/unet_mechanical_industry_meter.tar',
url=
'https://paddleseg.bj.bcebos.com/models/unet_mechanical_industry_meter.tar',
savepath=LOCAL_PATH,
extrapath=LOCAL_PATH)
......
......@@ -3,6 +3,7 @@
提供基于PaddlSeg最新的分割特色模型:
- [人像分割](./HumanSeg)
- [遥感分割](./RemoteSensing)
- [人体解析](./ACE2P)
- [车道线分割](./LaneNet)
- [工业表盘分割](#工业表盘分割)
......@@ -12,6 +13,14 @@
HumanSeg系列全新升级,提供三个适用于不同场景,包含适用于移动端实时分割场景的模型`HumanSeg-lite`,提供了包含光流的后处理的优化,使人像分割在视频场景中更加顺畅,更多详情请参考[HumanSeg](./HumanSeg)
## 遥感分割 Remote Sensing Segmentation
PaddleSeg遥感影像分割涵盖图像预处理、数据增强、模型训练、预测流程。
针对遥感数据多通道、分布范围大、分布不均的特点,我们支持多通道训练预测,内置10+多通道预处理和数据增强的策略,可结合实际业务场景进行定制组合,提升模型泛化能力和鲁棒性。
内置U-Net, HRNet两种主流分割网络,可选择不同的损失函数如Dice Loss, BCE Loss等方式强化小目标和不均衡样本场景下的分割精度。更多详情请参考[RemoteSensing](./RemoteSensing)
以下是遥感云检测的示例效果:
![](./RemoteSensing/docs/imgs/rs.png)
## 人体解析 Human Parsing
......
# 遥感分割(RemoteSensing)
# PaddleSeg遥感影像分割
遥感影像分割是图像分割领域中的重要应用场景,广泛应用于土地测绘、环境监测、城市建设等领域。遥感影像分割的目标多种多样,有诸如积雪、农作物、道路、建筑、水源等地物目标,也有例如云层的空中目标。
PaddleSeg提供了针对遥感专题的语义分割库RemoteSensing,涵盖图像预处理、数据增强、模型训练、预测流程,帮助用户利用深度学习技术解决遥感影像分割问题。
PaddleSeg遥感影像分割涵盖图像预处理、数据增强、模型训练、预测流程,帮助用户利用深度学习技术解决遥感影像分割问题。
## 特点
针对遥感数据多通道、分布范围大、分布不均的特点,我们支持多通道训练预测,内置一系列多通道预处理和数据增强的策略,可结合实际业务场景进行定制组合,提升模型泛化能力和鲁棒性。
- 针对遥感数据多通道、分布范围大、分布不均的特点,我们支持多通道训练预测,内置10+多通道预处理和数据增强的策略,可结合实际业务场景进行定制组合,提升模型泛化能力和鲁棒性。
**Note:** 所有命令需要在`PaddleSeg/contrib/RemoteSensing/`目录下执行。
- 内置U-Net, HRNet两种主流分割网络,可选择不同的损失函数如Dice Loss, BCE Loss等方式强化小目标和不均衡样本场景下的分割精度。
以下是遥感云检测的示例效果:
![](./docs/imgs/rs.png)
## 前置依赖
**Note:** 若没有特殊说明,以下所有命令需要在`PaddleSeg/contrib/RemoteSensing/`目录下执行。
- Paddle 1.7.1+
由于图像分割模型计算开销大,推荐在GPU版本的PaddlePaddle下使用。
PaddlePaddle的安装, 请按照[官网指引](https://paddlepaddle.org.cn/install/quick)安装合适自己的版本。
......@@ -18,7 +24,6 @@ PaddlePaddle的安装, 请按照[官网指引](https://paddlepaddle.org.cn/insta
- 其他依赖安装
通过以下命令安装python包依赖,请确保至少执行过一次以下命令:
```
cd RemoteSensing
pip install -r requirements.txt
```
......@@ -63,9 +68,9 @@ RemoteSensing # 根目录
```
其中,相应的文件名可根据需要自行定义。
遥感领域图像格式多种多样,不同传感器产生的数据格式可能不同。为方便数据加载,本分割库统一采用numpy存储格式`npy`作为原图格式,采用`png`无损压缩格式作为标注图片格式。
原图的前两维是图像的尺寸,第3维是图像的通道数。
标注图像为单通道图像,像素值即为对应的类别,像素标注类别需要从0开始递增
遥感影像的格式多种多样,不同传感器产生的数据格式也可能不同。PaddleSeg以numpy.ndarray数据类型进行图像预处理。为统一接口并方便数据加载,我们采用numpy存储格式`npy`作为原图格式,采用`png`无损压缩格式作为标注图片格式。
原图的尺寸应为(h, w, channel),其中h, w为图像的高和宽,channel为图像的通道数。
标注图像为单通道图像,像素值即为对应的类别,像素标注类别需要从0开始递增
例如0,1,2,3表示有4种类别,标注类别最多为256类。其中可以指定特定的像素值用于表示该值的像素不参与训练和评估(默认为255)。
`train_list.txt``val_list.txt`文本以空格为分割符分为两列,第一列为图像文件相对于dataset的相对路径,第二列为标注图像文件相对于dataset的相对路径。如下所示:
......@@ -93,154 +98,38 @@ labelB
### 1. 准备数据集
为了快速体验,我们准备了一个小型demo数据集,已位于`RemoteSensing/dataset/demo/`目录下.
对于您自己的数据集,您需要按照上述的数据协议进行格式转换,可分别使用numpy和pil库保存遥感数据和标注图片。其中numpy api示例如下:
对于您自己的数据集,您需要按照上述的数据协议进行格式转换,可分别使用numpy和Pillow库保存遥感数据和标注图片。其中numpy API示例如下:
```python
import numpy as np
# 保存遥感数据
# 将遥感数据保存到以 .npy 为扩展名的文件中
# img类型:numpy.ndarray
np.save(save_path, img)
```
### 2. 训练代码开发
通过如下`train_demo.py`代码进行训练。
> 导入RemoteSensing api
```python
import transforms.transforms as T
from readers.reader import Reader
from models import UNet
```
> 定义训练和验证时的数据处理和增强流程, 在`train_transforms`中加入了`RandomVerticalFlip`,`RandomHorizontalFlip`等数据增强方式。
```python
train_transforms = T.Compose([
T.RandomVerticalFlip(0.5),
T.RandomHorizontalFlip(0.5),
T.ResizeStepScaling(0.5, 2.0, 0.25),
T.RandomPaddingCrop(256),
T.Normalize(mean=[0.5] * channel, std=[0.5] * channel),
])
eval_transforms = T.Compose([
T.Normalize(mean=[0.5] * channel, std=[0.5] * channel),
])
```
> 定义数据读取器
```python
import os
import os.path as osp
train_list = osp.join(data_dir, 'train.txt')
val_list = osp.join(data_dir, 'val.txt')
label_list = osp.join(data_dir, 'labels.txt')
train_reader = Reader(
data_dir=data_dir,
file_list=train_list,
label_list=label_list,
transforms=train_transforms,
num_workers=8,
buffer_size=16,
shuffle=True,
parallel_method='thread')
eval_reader = Reader(
data_dir=data_dir,
file_list=val_list,
label_list=label_list,
transforms=eval_transforms,
num_workers=8,
buffer_size=16,
shuffle=False,
parallel_method='thread')
```
> 模型构建
```python
model = UNet(
num_classes=2, input_channel=channel, use_bce_loss=True, use_dice_loss=True)
```
> 模型训练,并开启边训边评估
```python
model.train(
num_epochs=num_epochs,
train_reader=train_reader,
train_batch_size=train_batch_size,
eval_reader=eval_reader,
save_interval_epochs=5,
log_interval_steps=10,
save_dir=save_dir,
pretrain_weights=None,
optimizer=None,
learning_rate=lr,
use_vdl=True
)
```
### 3. 模型训练
> 设置GPU卡号
### 2. 模型训练
#### (1) 设置GPU卡号
```shell script
export CUDA_VISIBLE_DEVICES=0
```
> 在RemoteSensing目录下运行`train_demo.py`即可开始训练。
#### (2) 以U-Net为例,在RemoteSensing目录下运行`train_demo.py`即可开始训练。
```shell script
python train_demo.py --data_dir dataset/demo/ --save_dir saved_model/unet/ --channel 3 --num_epochs 20
```
### 4. 模型预测代码开发
通过如下`predict_demo.py`代码进行预测。
> 导入RemoteSensing api
```python
from models import load_model
```
> 加载训练过程中最好的模型,设置预测结果保存路径。
```python
import os
import os.path as osp
model = load_model(osp.join(save_dir, 'best_model'))
pred_dir = osp.join(save_dir, 'pred')
if not osp.exists(pred_dir):
os.mkdir(pred_dir)
```
> 使用模型对验证集进行测试,并保存预测结果。
```python
import numpy as np
from PIL import Image as Image
val_list = osp.join(data_dir, 'val.txt')
color_map = [0, 0, 0, 255, 255, 255]
with open(val_list) as f:
lines = f.readlines()
for line in lines:
img_path = line.split(' ')[0]
print('Predicting {}'.format(img_path))
img_path_ = osp.join(data_dir, img_path)
pred = model.predict(img_path_)
# 以伪彩色png图片保存预测结果
pred_name = osp.basename(img_path).rstrip('npy') + 'png'
pred_path = osp.join(pred_dir, pred_name)
pred_mask = Image.fromarray(pred.astype(np.uint8), mode='P')
pred_mask.putpalette(color_map)
pred_mask.save(pred_path)
python train_demo.py --model_type unet --data_dir dataset/demo/ --save_dir saved_model/unet/ --channel 3 --num_epochs 20
```
### 5. 模型预测
> 设置GPU卡号
### 3. 模型预测
#### (1) 设置GPU卡号
```shell script
export CUDA_VISIBLE_DEVICES=0
```
> 在RemoteSensing目录下运行`predict_demo.py`即可开始训练。
#### (2) 以刚训练好的U-Net最优模型为例,在RemoteSensing目录下运行`predict_demo.py`即可开始训练。
```shell script
python predict_demo.py --data_dir dataset/demo/ --load_model_dir saved_model/unet/best_model/
python predict_demo.py --data_dir dataset/demo/ --file_list val.txt --load_model_dir saved_model/unet/best_model
```
## Api说明
## API说明
您可以使用`RemoteSensing`目录下提供的api构建自己的分割代码。
您可以使用`RemoteSensing`目录下提供的API构建自己的分割代码。
- [数据处理-transforms](docs/transforms.md)
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
......
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .load_model import *
from .unet import *
from .hrnet import *
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
import paddle.fluid as fluid
......@@ -19,15 +20,16 @@ import numpy as np
import time
import math
import yaml
import tqdm
import cv2
import copy
import json
import utils.logging as logging
from collections import OrderedDict
from os import path as osp
from utils.pretrain_weights import get_pretrain_weights
from utils.utils import seconds_to_hms, get_environ_info
from utils.metrics import ConfusionMatrix
import transforms.transforms as T
import utils
import __init__
def dict2str(dict_input):
......@@ -41,12 +43,45 @@ def dict2str(dict_input):
return out.strip(', ')
class BaseAPI:
def __init__(self):
# 现有的CV模型都有这个属性,而这个属且也需要在eval时用到
self.num_classes = None
class BaseModel(object):
def __init__(self,
num_classes=2,
use_bce_loss=False,
use_dice_loss=False,
class_weight=None,
ignore_index=255,
sync_bn=True):
self.init_params = locals()
if num_classes > 2 and (use_bce_loss or use_dice_loss):
raise ValueError(
"dice loss and bce loss is only applicable to binary classfication"
)
if class_weight is not None:
if isinstance(class_weight, list):
if len(class_weight) != num_classes:
raise ValueError(
"Length of class_weight should be equal to number of classes"
)
elif isinstance(class_weight, str):
if class_weight.lower() != 'dynamic':
raise ValueError(
"if class_weight is string, must be dynamic!")
else:
raise TypeError(
'Expect class_weight is a list or string but receive {}'.
format(type(class_weight)))
self.num_classes = num_classes
self.use_bce_loss = use_bce_loss
self.use_dice_loss = use_dice_loss
self.class_weight = class_weight
self.ignore_index = ignore_index
self.sync_bn = sync_bn
self.labels = None
if __init__.env_info['place'] == 'cpu':
self.env_info = get_environ_info()
if self.env_info['place'] == 'cpu':
self.places = fluid.cpu_places()
else:
self.places = fluid.cuda_places()
......@@ -60,10 +95,6 @@ class BaseAPI:
self.test_outputs = None
self.train_data_loader = None
self.eval_metrics = None
# 若模型是从inference model加载进来的,无法调用训练接口进行训练
self.trainable = True
# 是否使用多卡间同步BatchNorm均值和方差
self.sync_bn = False
# 当前模型状态
self.status = 'Normal'
......@@ -73,16 +104,20 @@ class BaseAPI:
else:
raise Exception("Please support correct batch_size, \
which can be divided by available cards({}) in {}".
format(__init__.env_info['num'],
__init__.env_info['place']))
format(self.env_info['num'],
self.env_info['place']))
def build_net(self, mode='train'):
"""应根据不同的情况进行构建"""
pass
def build_program(self):
# 构建训练网络
# build training network
self.train_inputs, self.train_outputs = self.build_net(mode='train')
self.train_prog = fluid.default_main_program()
startup_prog = fluid.default_startup_program()
# 构建预测网络
# build prediction network
self.test_prog = fluid.Program()
with fluid.program_guard(self.test_prog, startup_prog):
with fluid.unique_name.guard():
......@@ -90,15 +125,15 @@ class BaseAPI:
mode='test')
self.test_prog = self.test_prog.clone(for_test=True)
def arrange_transforms(self, transforms, mode='train'):
# 给transforms添加arrange操作
if transforms.transforms[-1].__class__.__name__.startswith('Arrange'):
transforms.transforms[-1] = T.ArrangeSegmenter(mode=mode)
def arrange_transform(self, transforms, mode='train'):
arrange_transform = T.ArrangeSegmenter
if type(transforms.transforms[-1]).__name__.startswith('Arrange'):
transforms.transforms[-1] = arrange_transform(mode=mode)
else:
transforms.transforms.append(T.ArrangeSegmenter(mode=mode))
transforms.transforms.append(arrange_transform(mode=mode))
def build_train_data_loader(self, reader, batch_size):
# 初始化data_loader
def build_train_data_loader(self, dataset, batch_size):
# init data_loader
if self.train_data_loader is None:
self.train_data_loader = fluid.io.DataLoader.from_generator(
feed_list=list(self.train_inputs.values()),
......@@ -106,72 +141,92 @@ class BaseAPI:
use_double_buffer=True,
iterable=True)
batch_size_each_gpu = self._get_single_card_bs(batch_size)
generator = reader.generator(
batch_size=batch_size_each_gpu, drop_last=True)
self.train_data_loader.set_sample_list_generator(
reader.generator(batch_size=batch_size_each_gpu),
dataset.generator(batch_size=batch_size_each_gpu),
places=self.places)
def net_initialize(self,
startup_prog=None,
pretrain_weights=None,
fuse_bn=False,
save_dir='.',
sensitivities_file=None,
eval_metric_loss=0.05):
if hasattr(self, 'backbone'):
backbone = self.backbone
else:
backbone = self.__class__.__name__
pretrain_weights = get_pretrain_weights(pretrain_weights, backbone,
save_dir)
resume_weights=None):
if startup_prog is None:
startup_prog = fluid.default_startup_program()
self.exe.run(startup_prog)
if pretrain_weights is not None:
if resume_weights is not None:
logging.info("Resume weights from {}".format(resume_weights))
if not osp.exists(resume_weights):
raise Exception("Path {} not exists.".format(resume_weights))
fluid.load(self.train_prog, osp.join(resume_weights, 'model'),
self.exe)
# Check is path ended by path spearator
if resume_weights[-1] == os.sep:
resume_weights = resume_weights[0:-1]
epoch_name = osp.basename(resume_weights)
# If resume weights is end of digit, restore epoch status
epoch = epoch_name.split('_')[-1]
if epoch.isdigit():
self.begin_epoch = int(epoch)
else:
raise ValueError("Resume model path is not valid!")
logging.info("Model checkpoint loaded successfully!")
elif pretrain_weights is not None:
logging.info(
"Load pretrain weights from {}.".format(pretrain_weights))
utils.utils.load_pretrain_weights(self.exe, self.train_prog,
pretrain_weights, fuse_bn)
# 进行裁剪
if sensitivities_file is not None:
from .slim.prune_config import get_sensitivities
sensitivities_file = get_sensitivities(sensitivities_file, self,
save_dir)
from .slim.prune import get_params_ratios, prune_program
prune_params_ratios = get_params_ratios(
sensitivities_file, eval_metric_loss=eval_metric_loss)
prune_program(self, prune_params_ratios)
self.status = 'Prune'
utils.load_pretrained_weights(self.exe, self.train_prog,
pretrain_weights)
def get_model_info(self):
# 存储相应的信息到yml文件
info = dict()
info['Model'] = self.__class__.__name__
info['_Attributes'] = {}
if 'self' in self.init_params:
del self.init_params['self']
if '__class__' in self.init_params:
del self.init_params['__class__']
info['_init_params'] = self.init_params
info['_Attributes'] = dict()
info['_Attributes']['num_classes'] = self.num_classes
info['_Attributes']['labels'] = self.labels
try:
primary_metric_key = list(self.eval_metrics.keys())[0]
primary_metric_value = float(self.eval_metrics[primary_metric_key])
info['_Attributes']['eval_metrics'] = {
primary_metric_key: primary_metric_value
}
info['_Attributes']['eval_metric'] = dict()
for k, v in self.eval_metrics.items():
if isinstance(v, np.ndarray):
if v.size > 1:
v = [float(i) for i in v]
else:
v = float(v)
info['_Attributes']['eval_metric'][k] = v
except:
pass
if hasattr(self, 'test_transforms'):
if self.test_transforms is not None:
info['Transforms'] = list()
info['test_transforms'] = list()
for op in self.test_transforms.transforms:
name = op.__class__.__name__
attr = op.__dict__
info['Transforms'].append({name: attr})
info['test_transforms'].append({name: attr})
if hasattr(self, 'train_transforms'):
if self.train_transforms is not None:
info['train_transforms'] = list()
for op in self.train_transforms.transforms:
name = op.__class__.__name__
attr = op.__dict__
info['train_transforms'].append({name: attr})
if hasattr(self, 'train_init'):
if 'self' in self.train_init:
del self.train_init['self']
if 'train_reader' in self.train_init:
del self.train_init['train_reader']
if 'eval_reader' in self.train_init:
del self.train_init['eval_reader']
if 'optimizer' in self.train_init:
del self.train_init['optimizer']
info['train_init'] = self.train_init
return info
def save_model(self, save_dir):
......@@ -179,76 +234,139 @@ class BaseAPI:
if osp.exists(save_dir):
os.remove(save_dir)
os.makedirs(save_dir)
fluid.save(self.train_prog, osp.join(save_dir, 'model'))
model_info = self.get_model_info()
if self.status == 'Normal':
fluid.save(self.train_prog, osp.join(save_dir, 'model'))
model_info['status'] = self.status
with open(
osp.join(save_dir, 'model.yml'), encoding='utf-8',
mode='w') as f:
yaml.dump(model_info, f)
# 评估结果保存
if hasattr(self, 'eval_details'):
with open(osp.join(save_dir, 'eval_details.json'), 'w') as f:
json.dump(self.eval_details, f)
if self.status == 'Prune':
# 保存裁剪的shape
shapes = {}
for block in self.train_prog.blocks:
for param in block.all_parameters():
pd_var = fluid.global_scope().find_var(param.name)
pd_param = pd_var.get_tensor()
shapes[param.name] = np.array(pd_param).shape
# The flag of model for saving successfully
open(osp.join(save_dir, '.success'), 'w').close()
logging.info("Model saved in {}.".format(save_dir))
def export_inference_model(self, save_dir):
test_input_names = [var.name for var in list(self.test_inputs.values())]
test_outputs = list(self.test_outputs.values())
fluid.io.save_inference_model(
dirname=save_dir,
executor=self.exe,
params_filename='__params__',
feeded_var_names=test_input_names,
target_vars=test_outputs,
main_program=self.test_prog)
model_info = self.get_model_info()
model_info['status'] = 'Infer'
# Save input and output descrition of model
model_info['_ModelInputsOutputs'] = dict()
model_info['_ModelInputsOutputs']['test_inputs'] = [
[k, v.name] for k, v in self.test_inputs.items()
]
model_info['_ModelInputsOutputs']['test_outputs'] = [
[k, v.name] for k, v in self.test_outputs.items()
]
with open(
osp.join(save_dir, 'prune.yml'), encoding='utf-8',
osp.join(save_dir, 'model.yml'), encoding='utf-8',
mode='w') as f:
yaml.dump(shapes, f)
yaml.dump(model_info, f)
# 模型保存成功的标志
# The flag of model for saving successfully
open(osp.join(save_dir, '.success'), 'w').close()
logging.info("Model saved in {}.".format(save_dir))
logging.info("Model for inference deploy saved in {}.".format(save_dir))
def train_loop(self,
def default_optimizer(self,
learning_rate,
num_epochs,
num_steps_each_epoch,
lr_decay_power=0.9,
regularization_coeff=4e-5):
decay_step = num_epochs * num_steps_each_epoch
lr_decay = fluid.layers.polynomial_decay(
learning_rate,
decay_step,
end_learning_rate=0,
power=lr_decay_power)
optimizer = fluid.optimizer.Momentum(
lr_decay,
momentum=0.9,
regularization=fluid.regularizer.L2Decay(
regularization_coeff=regularization_coeff))
return optimizer
def train(self,
num_epochs,
train_reader,
train_batch_size,
train_batch_size=2,
eval_reader=None,
eval_best_metric=None,
save_interval_epochs=1,
log_interval_steps=10,
log_interval_steps=2,
save_dir='output',
pretrain_weights=None,
resume_weights=None,
optimizer=None,
learning_rate=0.01,
lr_decay_power=0.9,
regularization_coeff=4e-5,
use_vdl=False):
self.labels = train_reader.labels
self.train_transforms = train_reader.transforms
self.train_init = locals()
self.begin_epoch = 0
if optimizer is None:
num_steps_each_epoch = train_reader.num_samples // train_batch_size
optimizer = self.default_optimizer(
learning_rate=learning_rate,
num_epochs=num_epochs,
num_steps_each_epoch=num_steps_each_epoch,
lr_decay_power=lr_decay_power,
regularization_coeff=regularization_coeff)
self.optimizer = optimizer
self.build_program()
self.net_initialize(
startup_prog=fluid.default_startup_program(),
pretrain_weights=pretrain_weights,
resume_weights=resume_weights)
if self.begin_epoch >= num_epochs:
raise ValueError(
("begin epoch[{}] is larger than num_epochs[{}]").format(
self.begin_epoch, num_epochs))
if not osp.isdir(save_dir):
if osp.exists(save_dir):
os.remove(save_dir)
os.makedirs(save_dir)
if use_vdl:
from visualdl import LogWriter
vdl_logdir = osp.join(save_dir, 'vdl_log')
# 给transform添加arrange操作
self.arrange_transforms(
transforms=train_reader.transforms, mode='train')
# 构建train_data_loader
# add arrange op tor transforms
self.arrange_transform(transforms=train_reader.transforms, mode='train')
self.build_train_data_loader(
reader=train_reader, batch_size=train_batch_size)
dataset=train_reader, batch_size=train_batch_size)
if eval_reader is not None:
self.eval_transforms = eval_reader.transforms
self.test_transforms = copy.deepcopy(eval_reader.transforms)
# 获取实时变化的learning rate
lr = self.optimizer._learning_rate
lr.persistable = True
if isinstance(lr, fluid.framework.Variable):
self.train_outputs['lr'] = lr
# 在多卡上跑训练
# 多卡训练
if self.parallel_train_prog is None:
build_strategy = fluid.compiler.BuildStrategy()
build_strategy.fuse_all_optimizer_ops = False
if __init__.env_info['place'] != 'cpu' and len(self.places) > 1:
if self.env_info['place'] != 'cpu' and len(self.places) > 1:
build_strategy.sync_batch_norm = self.sync_bn
exec_strategy = fluid.ExecutionStrategy()
exec_strategy.num_iteration_per_drop_scope = 1
self.parallel_train_prog = fluid.CompiledProgram(
self.train_prog).with_data_parallel(
loss_name=self.train_outputs['loss'].name,
......@@ -259,16 +377,27 @@ class BaseAPI:
train_reader.num_samples / train_batch_size)
num_steps = 0
time_stat = list()
time_train_one_epoch = None
time_eval_one_epoch = None
total_num_steps_eval = 0
# eval times
total_eval_times = math.ceil(num_epochs / save_interval_epochs)
eval_batch_size = train_batch_size
if eval_reader is not None:
total_num_steps_eval = math.ceil(
eval_reader.num_samples / eval_batch_size)
if use_vdl:
# VisualDL component
from visualdl import LogWriter
vdl_logdir = osp.join(save_dir, 'vdl_log')
log_writer = LogWriter(vdl_logdir)
best_accuracy = -1.0
best_metric = -1.0
best_model_epoch = 1
for i in range(num_epochs):
for i in range(self.begin_epoch, num_epochs):
records = list()
step_start_time = time.time()
epoch_start_time = time.time()
for step, data in enumerate(self.train_data_loader()):
outputs = self.exe.run(
self.parallel_train_prog,
......@@ -277,22 +406,15 @@ class BaseAPI:
outputs_avg = np.mean(np.array(outputs), axis=1)
records.append(outputs_avg)
# 训练完成剩余时间预估
current_time = time.time()
step_cost_time = current_time - step_start_time
step_start_time = current_time
# time estimated to complete the training
currend_time = time.time()
step_cost_time = currend_time - step_start_time
step_start_time = currend_time
if len(time_stat) < 20:
time_stat.append(step_cost_time)
else:
time_stat[num_steps % 20] = step_cost_time
eta = ((num_epochs - i) * total_num_steps - step -
1) * np.mean(time_stat)
eta_h = math.floor(eta / 3600)
eta_m = math.floor((eta - eta_h * 3600) / 60)
eta_s = int(eta - eta_h * 3600 - eta_m * 60)
eta_str = "{}:{}:{}".format(eta_h, eta_m, eta_s)
# 每间隔log_interval_steps,输出loss信息
num_steps += 1
if num_steps % log_interval_steps == 0:
step_metrics = OrderedDict(
......@@ -301,38 +423,52 @@ class BaseAPI:
if use_vdl:
for k, v in step_metrics.items():
log_writer.add_scalar(
tag="Training: {}".format(k),
value=v,
step=num_steps)
step=num_steps,
tag='train/{}'.format(k),
value=v)
# 计算剩余时间
avg_step_time = np.mean(time_stat)
if time_train_one_epoch is not None:
eta = (num_epochs - i - 1) * time_train_one_epoch + (
total_num_steps - step - 1) * avg_step_time
else:
eta = ((num_epochs - i) * total_num_steps - step -
1) * avg_step_time
if time_eval_one_epoch is not None:
eval_eta = (total_eval_times - i // save_interval_epochs
) * time_eval_one_epoch
else:
eval_eta = (total_eval_times - i // save_interval_epochs
) * total_num_steps_eval * avg_step_time
eta_str = seconds_to_hms(eta + eval_eta)
logging.info(
"[TRAIN] Epoch={}/{}, Step={}/{}, {}, eta={}".format(
i + 1, num_epochs, step + 1, total_num_steps,
dict2str(step_metrics), eta_str))
"[TRAIN] Epoch={}/{}, Step={}/{}, {}, time_each_step={}s, eta={}"
.format(i + 1, num_epochs, step + 1, total_num_steps,
dict2str(step_metrics), round(avg_step_time, 2),
eta_str))
train_metrics = OrderedDict(
zip(list(self.train_outputs.keys()), np.mean(records, axis=0)))
logging.info('[TRAIN] Epoch {} finished, {} .'.format(
i + 1, dict2str(train_metrics)))
time_train_one_epoch = time.time() - epoch_start_time
# 每间隔save_interval_epochs, 在验证集上评估和对模型进行保存
eval_epoch_start_time = time.time()
if (i + 1) % save_interval_epochs == 0 or i == num_epochs - 1:
current_save_dir = osp.join(save_dir, "epoch_{}".format(i + 1))
if not osp.isdir(current_save_dir):
os.makedirs(current_save_dir)
if eval_reader is not None:
# 检测目前仅支持单卡评估,训练数据batch大小与显卡数量之商为验证数据batch大小。
eval_batch_size = train_batch_size
self.eval_metrics, self.eval_details = self.evaluate(
self.eval_metrics = self.evaluate(
eval_reader=eval_reader,
batch_size=eval_batch_size,
verbose=True,
epoch_id=i + 1,
return_details=True)
logging.info('[EVAL] Finished, Epoch={}, {} .'.format(
i + 1, dict2str(self.eval_metrics)))
epoch_id=i + 1)
# 保存最优模型
current_metric = self.eval_metrics[eval_best_metric]
if current_metric > best_accuracy:
best_accuracy = current_metric
if current_metric > best_metric:
best_metric = current_metric
best_model_epoch = i + 1
best_model_dir = osp.join(save_dir, "best_model")
self.save_model(save_dir=best_model_dir)
......@@ -344,10 +480,131 @@ class BaseAPI:
if v.size > 1:
continue
log_writer.add_scalar(
tag="Evaluation: {}".format(k),
step=i + 1,
step=num_steps,
tag='evaluate/{}'.format(k),
value=v)
self.save_model(save_dir=current_save_dir)
time_eval_one_epoch = time.time() - eval_epoch_start_time
if eval_reader is not None:
logging.info(
'Current evaluated best model in eval_reader is epoch_{}, {}={}'
.format(best_model_epoch, eval_best_metric, best_accuracy))
'Current evaluated best model in validation dataset is epoch_{}, {}={}'
.format(best_model_epoch, eval_best_metric,
best_metric))
def evaluate(self, eval_reader, batch_size=1, epoch_id=None):
"""评估。
Args:
eval_reader (reader): 评估数据读取器。
batch_size (int): 评估时的batch大小。默认1。
epoch_id (int): 当前评估模型所在的训练轮数。
return_details (bool): 是否返回详细信息。默认False。
Returns:
dict: 当return_details为False时,返回dict。包含关键字:'miou'、'category_iou'、'macc'、
'category_acc'和'kappa',分别表示平均iou、各类别iou、平均准确率、各类别准确率和kappa系数。
tuple (metrics, eval_details):当return_details为True时,增加返回dict (eval_details),
包含关键字:'confusion_matrix',表示评估的混淆矩阵。
"""
self.arrange_transform(transforms=eval_reader.transforms, mode='train')
total_steps = math.ceil(eval_reader.num_samples * 1.0 / batch_size)
conf_mat = ConfusionMatrix(self.num_classes, streaming=True)
data_generator = eval_reader.generator(
batch_size=batch_size, drop_last=False)
if not hasattr(self, 'parallel_test_prog'):
self.parallel_test_prog = fluid.CompiledProgram(
self.test_prog).with_data_parallel(
share_vars_from=self.parallel_train_prog)
logging.info(
"Start to evaluating(total_samples={}, total_steps={})...".format(
eval_reader.num_samples, total_steps))
for step, data in tqdm.tqdm(
enumerate(data_generator()), total=total_steps):
images = np.array([d[0] for d in data])
images = images.astype(np.float32)
labels = np.array([d[1] for d in data])
num_samples = images.shape[0]
if num_samples < batch_size:
num_pad_samples = batch_size - num_samples
pad_images = np.tile(images[0:1], (num_pad_samples, 1, 1, 1))
images = np.concatenate([images, pad_images])
feed_data = {'image': images}
outputs = self.exe.run(
self.parallel_test_prog,
feed=feed_data,
fetch_list=list(self.test_outputs.values()),
return_numpy=True)
pred = outputs[0]
if num_samples < batch_size:
pred = pred[0:num_samples]
mask = labels != self.ignore_index
conf_mat.calculate(pred=pred, label=labels, ignore=mask)
_, iou = conf_mat.mean_iou()
logging.debug("[EVAL] Epoch={}, Step={}/{}, iou={}".format(
epoch_id, step + 1, total_steps, iou))
category_iou, miou = conf_mat.mean_iou()
category_acc, macc = conf_mat.accuracy()
precision, recall = conf_mat.precision_recall()
metrics = OrderedDict(
zip([
'miou', 'category_iou', 'macc', 'category_acc', 'kappa',
'precision', 'recall'
], [
miou, category_iou, macc, category_acc,
conf_mat.kappa(), precision, recall
]))
logging.info('[EVAL] Finished, Epoch={}, {} .'.format(
epoch_id, dict2str(metrics)))
return metrics
def predict(self, im_file, transforms=None):
"""预测。
Args:
img_file(str|np.ndarray): 预测图像。
transforms(transforms.transforms): 数据预处理操作。
Returns:
dict: 包含关键字'label_map'和'score_map', 'label_map'存储预测结果灰度图,
像素值表示对应的类别,'score_map'存储各类别的概率,shape=(h, w, num_classes)
"""
if isinstance(im_file, str):
if not osp.exists(im_file):
raise ValueError(
'The Image file does not exist: {}'.format(im_file))
if transforms is None and not hasattr(self, 'test_transforms'):
raise Exception("transforms need to be defined, now is None.")
if transforms is not None:
self.arrange_transform(transforms=transforms, mode='test')
im, im_info = transforms(im_file)
else:
self.arrange_transform(transforms=self.test_transforms, mode='test')
im, im_info = self.test_transforms(im_file)
im = im.astype(np.float32)
im = np.expand_dims(im, axis=0)
result = self.exe.run(
self.test_prog,
feed={'image': im},
fetch_list=list(self.test_outputs.values()))
pred = result[0]
logit = result[1]
logit = np.squeeze(logit)
logit = np.transpose(logit, (1, 2, 0))
pred = np.squeeze(pred).astype('uint8')
keys = list(im_info.keys())
for k in keys[::-1]:
if k == 'shape_before_resize':
h, w = im_info[k][0], im_info[k][1]
pred = cv2.resize(pred, (w, h), cv2.INTER_NEAREST)
logit = cv2.resize(logit, (w, h), cv2.INTER_LINEAR)
elif k == 'shape_before_padding':
h, w = im_info[k][0], im_info[k][1]
pred = pred[0:h, 0:w]
logit = logit[0:h, 0:w, :]
return {'label_map': pred, 'score_map': logit}
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
import paddle.fluid as fluid
import os
from os import path as osp
import numpy as np
from collections import OrderedDict
import copy
import math
import time
import tqdm
import cv2
import yaml
import utils
import utils.logging as logging
from utils.utils import seconds_to_hms, get_environ_info
from utils.metrics import ConfusionMatrix
import nets
import transforms.transforms as T
from .base import BaseModel
def dict2str(dict_input):
out = ''
for k, v in dict_input.items():
try:
v = round(float(v), 6)
except:
pass
out = out + '{}={}, '.format(k, v)
return out.strip(', ')
class HRNet(BaseModel):
def __init__(self,
num_classes=2,
input_channel=3,
stage1_num_modules=1,
stage1_num_blocks=[4],
stage1_num_channels=[64],
stage2_num_modules=1,
stage2_num_blocks=[4, 4],
stage2_num_channels=[18, 36],
stage3_num_modules=4,
stage3_num_blocks=[4, 4, 4],
stage3_num_channels=[18, 36, 72],
stage4_num_modules=3,
stage4_num_blocks=[4, 4, 4, 4],
stage4_num_channels=[18, 36, 72, 144],
use_bce_loss=False,
use_dice_loss=False,
class_weight=None,
ignore_index=255,
sync_bn=True):
super().__init__(
num_classes=num_classes,
use_bce_loss=use_bce_loss,
use_dice_loss=use_dice_loss,
class_weight=class_weight,
ignore_index=ignore_index,
sync_bn=sync_bn)
self.init_params = locals()
self.input_channel = input_channel
self.stage1_num_modules = stage1_num_modules
self.stage1_num_blocks = stage1_num_blocks
self.stage1_num_channels = stage1_num_channels
self.stage2_num_modules = stage2_num_modules
self.stage2_num_blocks = stage2_num_blocks
self.stage2_num_channels = stage2_num_channels
self.stage3_num_modules = stage3_num_modules
self.stage3_num_blocks = stage3_num_blocks
self.stage3_num_channels = stage3_num_channels
self.stage4_num_modules = stage4_num_modules
self.stage4_num_blocks = stage4_num_blocks
self.stage4_num_channels = stage4_num_channels
def build_net(self, mode='train'):
"""应根据不同的情况进行构建"""
model = nets.HRNet(
self.num_classes,
self.input_channel,
mode=mode,
stage1_num_modules=self.stage1_num_modules,
stage1_num_blocks=self.stage1_num_blocks,
stage1_num_channels=self.stage1_num_channels,
stage2_num_modules=self.stage2_num_modules,
stage2_num_blocks=self.stage2_num_blocks,
stage2_num_channels=self.stage2_num_channels,
stage3_num_modules=self.stage3_num_modules,
stage3_num_blocks=self.stage3_num_blocks,
stage3_num_channels=self.stage3_num_channels,
stage4_num_modules=self.stage4_num_modules,
stage4_num_blocks=self.stage4_num_blocks,
stage4_num_channels=self.stage4_num_channels,
use_bce_loss=self.use_bce_loss,
use_dice_loss=self.use_dice_loss,
class_weight=self.class_weight,
ignore_index=self.ignore_index)
inputs = model.generate_inputs()
model_out = model.build_net(inputs)
outputs = OrderedDict()
if mode == 'train':
self.optimizer.minimize(model_out)
outputs['loss'] = model_out
else:
outputs['pred'] = model_out[0]
outputs['logit'] = model_out[1]
return inputs, outputs
def train(self,
num_epochs,
train_reader,
train_batch_size=2,
eval_reader=None,
eval_best_metric='kappa',
save_interval_epochs=1,
log_interval_steps=2,
save_dir='output',
pretrain_weights=None,
resume_weights=None,
optimizer=None,
learning_rate=0.01,
lr_decay_power=0.9,
regularization_coeff=5e-4,
use_vdl=False):
super().train(
num_epochs=num_epochs,
train_reader=train_reader,
train_batch_size=train_batch_size,
eval_reader=eval_reader,
eval_best_metric=eval_best_metric,
save_interval_epochs=save_interval_epochs,
log_interval_steps=log_interval_steps,
save_dir=save_dir,
pretrain_weights=pretrain_weights,
resume_weights=resume_weights,
optimizer=optimizer,
learning_rate=learning_rate,
lr_decay_power=lr_decay_power,
regularization_coeff=regularization_coeff,
use_vdl=use_vdl)
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -25,7 +26,7 @@ import models
def load_model(model_dir):
if not osp.exists(osp.join(model_dir, "model.yml")):
raise Exception("There's not model.yml in {}".format(model_dir))
raise Exception("There's no model.yml in {}".format(model_dir))
with open(osp.join(model_dir, "model.yml")) as f:
info = yaml.load(f.read(), Loader=yaml.Loader)
status = info['status']
......@@ -35,8 +36,7 @@ def load_model(model_dir):
info['Model']))
model = getattr(models, info['Model'])(**info['_init_params'])
if status == "Normal" or \
status == "Prune":
if status == "Normal":
startup_prog = fluid.Program()
model.test_prog = fluid.Program()
with fluid.program_guard(model.test_prog, startup_prog):
......@@ -45,17 +45,12 @@ def load_model(model_dir):
mode='test')
model.test_prog = model.test_prog.clone(for_test=True)
model.exe.run(startup_prog)
if status == "Prune":
from .slim.prune import update_program
model.test_prog = update_program(model.test_prog, model_dir,
model.places[0])
import pickle
with open(osp.join(model_dir, 'model.pdparams'), 'rb') as f:
load_dict = pickle.load(f)
fluid.io.set_program_state(model.test_prog, load_dict)
elif status == "Infer" or \
status == "Quant":
elif status == "Infer":
[prog, input_names, outputs] = fluid.io.load_inference_model(
model_dir, model.exe, params_filename='__params__')
model.test_prog = prog
......@@ -67,8 +62,8 @@ def load_model(model_dir):
for i, out in enumerate(outputs):
var_desc = test_outputs_info[i]
model.test_outputs[var_desc[0]] = out
if 'Transforms' in info:
model.test_transforms = build_transforms(info['Transforms'])
if 'test_transforms' in info:
model.test_transforms = build_transforms(info['test_transforms'])
model.eval_transforms = copy.deepcopy(model.test_transforms)
if '_Attributes' in info:
......
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
import os.path as osp
import numpy as np
import math
import cv2
import paddle.fluid as fluid
import utils.logging as logging
from collections import OrderedDict
from .base import BaseAPI
from .base import BaseModel
from utils.metrics import ConfusionMatrix
import nets
class UNet(BaseAPI):
class UNet(BaseModel):
"""实现UNet网络的构建并进行训练、评估、预测和模型导出。
Args:
......@@ -55,9 +55,16 @@ class UNet(BaseAPI):
use_bce_loss=False,
use_dice_loss=False,
class_weight=None,
ignore_index=255):
ignore_index=255,
sync_bn=True):
super().__init__(
num_classes=num_classes,
use_bce_loss=use_bce_loss,
use_dice_loss=use_dice_loss,
class_weight=class_weight,
ignore_index=ignore_index,
sync_bn=sync_bn)
self.init_params = locals()
super(UNet, self).__init__()
# dice_loss或bce_loss只适用两类分割中
if num_classes > 2 and (use_bce_loss or use_dice_loss):
raise ValueError(
......@@ -115,24 +122,6 @@ class UNet(BaseAPI):
outputs['logit'] = model_out[1]
return inputs, outputs
def default_optimizer(self,
learning_rate,
num_epochs,
num_steps_each_epoch,
lr_decay_power=0.9):
decay_step = num_epochs * num_steps_each_epoch
lr_decay = fluid.layers.polynomial_decay(
learning_rate,
decay_step,
end_learning_rate=0,
power=lr_decay_power)
optimizer = fluid.optimizer.Momentum(
lr_decay,
momentum=0.9,
regularization=fluid.regularizer.L2Decay(
regularization_coeff=4e-05))
return optimizer
def train(self,
num_epochs,
train_reader,
......@@ -142,13 +131,13 @@ class UNet(BaseAPI):
save_interval_epochs=1,
log_interval_steps=2,
save_dir='output',
pretrain_weights='COCO',
pretrain_weights=None,
resume_weights=None,
optimizer=None,
learning_rate=0.01,
lr_decay_power=0.9,
use_vdl=False,
sensitivities_file=None,
eval_metric_loss=0.05):
regularization_coeff=5e-4,
use_vdl=False):
"""训练。
Args:
......@@ -160,46 +149,17 @@ class UNet(BaseAPI):
save_interval_epochs (int): 模型保存间隔(单位:迭代轮数)。默认为1。
log_interval_steps (int): 训练日志输出间隔(单位:迭代次数)。默认为2。
save_dir (str): 模型保存路径。默认'output'。
pretrain_weights (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'COCO',
则自动下载在COCO图片数据上预训练的模型权重;若为None,则不使用预训练模型。默认为'COCO'。
pretrain_weights (str): 若指定为路径时,则加载路径下预训练模型;若为None,则不使用预训练模型。
optimizer (paddle.fluid.optimizer): 优化器。当改参数为None时,使用默认的优化器:使用
fluid.optimizer.Momentum优化方法,polynomial的学习率衰减策略。
learning_rate (float): 默认优化器的初始学习率。默认0.01。
lr_decay_power (float): 默认优化器学习率多项式衰减系数。默认0.9。
use_vdl (bool): 是否使用VisualDL进行可视化。默认False。
sensitivities_file (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT',
则自动下载在ImageNet图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。
eval_metric_loss (float): 可容忍的精度损失。默认为0.05。
Raises:
ValueError: 模型从inference model进行加载。
"""
if not self.trainable:
raise ValueError(
"Model is not trainable since it was loaded from a inference model."
)
self.labels = train_reader.labels
if optimizer is None:
num_steps_each_epoch = train_reader.num_samples // train_batch_size
optimizer = self.default_optimizer(
learning_rate=learning_rate,
num_epochs=num_epochs,
num_steps_each_epoch=num_steps_each_epoch,
lr_decay_power=lr_decay_power)
self.optimizer = optimizer
# 构建训练、验证、预测网络
self.build_program()
# 初始化网络权重
self.net_initialize(
startup_prog=fluid.default_startup_program(),
pretrain_weights=pretrain_weights,
save_dir=save_dir,
sensitivities_file=sensitivities_file,
eval_metric_loss=eval_metric_loss)
# 训练
self.train_loop(
super().train(
num_epochs=num_epochs,
train_reader=train_reader,
train_batch_size=train_batch_size,
......@@ -208,6 +168,12 @@ class UNet(BaseAPI):
save_interval_epochs=save_interval_epochs,
log_interval_steps=log_interval_steps,
save_dir=save_dir,
pretrain_weights=pretrain_weights,
resume_weights=resume_weights,
optimizer=optimizer,
learning_rate=learning_rate,
lr_decay_power=lr_decay_power,
regularization_coeff=regularization_coeff,
use_vdl=use_vdl)
def evaluate(self,
......@@ -231,7 +197,7 @@ class UNet(BaseAPI):
tuple (metrics, eval_details):当return_details为True时,增加返回dict (eval_details),
包含关键字:'confusion_matrix',表示评估的混淆矩阵。
"""
self.arrange_transforms(transforms=eval_reader.transforms, mode='eval')
self.arrange_transform(transforms=eval_reader.transforms, mode='eval')
total_steps = math.ceil(eval_reader.num_samples * 1.0 / batch_size)
conf_mat = ConfusionMatrix(self.num_classes, streaming=True)
data_generator = eval_reader.generator(
......@@ -272,11 +238,16 @@ class UNet(BaseAPI):
category_iou, miou = conf_mat.mean_iou()
category_acc, macc = conf_mat.accuracy()
precision, recall = conf_mat.precision_recall()
metrics = OrderedDict(
zip(['miou', 'category_iou', 'macc', 'category_acc', 'kappa'],
[miou, category_iou, macc, category_acc,
conf_mat.kappa()]))
zip([
'miou', 'category_iou', 'macc', 'category_acc', 'kappa',
'precision', 'recall'
], [
miou, category_iou, macc, category_acc,
conf_mat.kappa(), precision, recall
]))
if return_details:
eval_details = {
'confusion_matrix': conf_mat.confusion_matrix.tolist()
......@@ -296,11 +267,10 @@ class UNet(BaseAPI):
if transforms is None and not hasattr(self, 'test_transforms'):
raise Exception("transforms need to be defined, now is None.")
if transforms is not None:
self.arrange_transforms(transforms=transforms, mode='test')
self.arrange_transform(transforms=transforms, mode='test')
im, im_info = transforms(im_file)
else:
self.arrange_transforms(
transforms=self.test_transforms, mode='test')
self.arrange_transform(transforms=self.test_transforms, mode='test')
im, im_info = self.test_transforms(im_file)
im = im.astype(np.float32)
im = np.expand_dims(im, axis=0)
......@@ -319,4 +289,4 @@ class UNet(BaseAPI):
h, w = im_info[k][0], im_info[k][1]
pred = pred[0:h, 0:w]
return pred
return {'label_map': pred}
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .unet import UNet
from .hrnet import HRNet
# coding: utf8
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from collections import OrderedDict
import paddle.fluid as fluid
from paddle.fluid.initializer import MSRA
from paddle.fluid.param_attr import ParamAttr
from .loss import softmax_with_loss
from .loss import dice_loss
from .loss import bce_loss
from .libs import sigmoid_to_softmax
class HRNet(object):
def __init__(self,
num_classes,
input_channel=3,
mode='train',
stage1_num_modules=1,
stage1_num_blocks=[4],
stage1_num_channels=[64],
stage2_num_modules=1,
stage2_num_blocks=[4, 4],
stage2_num_channels=[18, 36],
stage3_num_modules=4,
stage3_num_blocks=[4, 4, 4],
stage3_num_channels=[18, 36, 72],
stage4_num_modules=3,
stage4_num_blocks=[4, 4, 4, 4],
stage4_num_channels=[18, 36, 72, 144],
use_bce_loss=False,
use_dice_loss=False,
class_weight=None,
ignore_index=255):
# dice_loss或bce_loss只适用两类分割中
if num_classes > 2 and (use_bce_loss or use_dice_loss):
raise ValueError(
"dice loss and bce loss is only applicable to binary classfication"
)
if class_weight is not None:
if isinstance(class_weight, list):
if len(class_weight) != num_classes:
raise ValueError(
"Length of class_weight should be equal to number of classes"
)
elif isinstance(class_weight, str):
if class_weight.lower() != 'dynamic':
raise ValueError(
"if class_weight is string, must be dynamic!")
else:
raise TypeError(
'Expect class_weight is a list or string but receive {}'.
format(type(class_weight)))
self.num_classes = num_classes
self.input_channel = input_channel
self.mode = mode
self.use_bce_loss = use_bce_loss
self.use_dice_loss = use_dice_loss
self.class_weight = class_weight
self.ignore_index = ignore_index
self.stage1_num_modules = stage1_num_modules
self.stage1_num_blocks = stage1_num_blocks
self.stage1_num_channels = stage1_num_channels
self.stage2_num_modules = stage2_num_modules
self.stage2_num_blocks = stage2_num_blocks
self.stage2_num_channels = stage2_num_channels
self.stage3_num_modules = stage3_num_modules
self.stage3_num_blocks = stage3_num_blocks
self.stage3_num_channels = stage3_num_channels
self.stage4_num_modules = stage4_num_modules
self.stage4_num_blocks = stage4_num_blocks
self.stage4_num_channels = stage4_num_channels
def build_net(self, inputs):
if self.use_dice_loss or self.use_bce_loss:
self.num_classes = 1
image = inputs['image']
logit = self._high_resolution_net(image, self.num_classes)
if self.num_classes == 1:
out = sigmoid_to_softmax(logit)
out = fluid.layers.transpose(out, [0, 2, 3, 1])
else:
out = fluid.layers.transpose(logit, [0, 2, 3, 1])
pred = fluid.layers.argmax(out, axis=3)
pred = fluid.layers.unsqueeze(pred, axes=[3])
if self.mode == 'train':
label = inputs['label']
mask = label != self.ignore_index
return self._get_loss(logit, label, mask)
else:
if self.num_classes == 1:
logit = sigmoid_to_softmax(logit)
else:
logit = fluid.layers.softmax(logit, axis=1)
return pred, logit
return logit
def generate_inputs(self):
inputs = OrderedDict()
inputs['image'] = fluid.data(
dtype='float32',
shape=[None, self.input_channel, None, None],
name='image')
if self.mode == 'train':
inputs['label'] = fluid.data(
dtype='int32', shape=[None, 1, None, None], name='label')
elif self.mode == 'eval':
inputs['label'] = fluid.data(
dtype='int32', shape=[None, 1, None, None], name='label')
return inputs
def _get_loss(self, logit, label, mask):
avg_loss = 0
if not (self.use_dice_loss or self.use_bce_loss):
avg_loss += softmax_with_loss(
logit,
label,
mask,
num_classes=self.num_classes,
weight=self.class_weight,
ignore_index=self.ignore_index)
else:
if self.use_dice_loss:
avg_loss += dice_loss(logit, label, mask)
if self.use_bce_loss:
avg_loss += bce_loss(
logit, label, mask, ignore_index=self.ignore_index)
return avg_loss
def _conv_bn_layer(self,
input,
filter_size,
num_filters,
stride=1,
padding=1,
num_groups=1,
if_act=True,
name=None):
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=num_groups,
act=None,
param_attr=ParamAttr(initializer=MSRA(), name=name + '_weights'),
bias_attr=False)
bn_name = name + '_bn'
bn = fluid.layers.batch_norm(
input=conv,
param_attr=ParamAttr(
name=bn_name + "_scale",
initializer=fluid.initializer.Constant(1.0)),
bias_attr=ParamAttr(
name=bn_name + "_offset",
initializer=fluid.initializer.Constant(0.0)),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
if if_act:
bn = fluid.layers.relu(bn)
return bn
def _basic_block(self,
input,
num_filters,
stride=1,
downsample=False,
name=None):
residual = input
conv = self._conv_bn_layer(
input=input,
filter_size=3,
num_filters=num_filters,
stride=stride,
name=name + '_conv1')
conv = self._conv_bn_layer(
input=conv,
filter_size=3,
num_filters=num_filters,
if_act=False,
name=name + '_conv2')
if downsample:
residual = self._conv_bn_layer(
input=input,
filter_size=1,
num_filters=num_filters,
if_act=False,
name=name + '_downsample')
return fluid.layers.elementwise_add(x=residual, y=conv, act='relu')
def _bottleneck_block(self,
input,
num_filters,
stride=1,
downsample=False,
name=None):
residual = input
conv = self._conv_bn_layer(
input=input,
filter_size=1,
num_filters=num_filters,
name=name + '_conv1')
conv = self._conv_bn_layer(
input=conv,
filter_size=3,
num_filters=num_filters,
stride=stride,
name=name + '_conv2')
conv = self._conv_bn_layer(
input=conv,
filter_size=1,
num_filters=num_filters * 4,
if_act=False,
name=name + '_conv3')
if downsample:
residual = self._conv_bn_layer(
input=input,
filter_size=1,
num_filters=num_filters * 4,
if_act=False,
name=name + '_downsample')
return fluid.layers.elementwise_add(x=residual, y=conv, act='relu')
def _fuse_layers(self, x, channels, multi_scale_output=True, name=None):
out = []
for i in range(len(channels) if multi_scale_output else 1):
residual = x[i]
shape = fluid.layers.shape(residual)[-2:]
for j in range(len(channels)):
if j > i:
y = self._conv_bn_layer(
x[j],
filter_size=1,
num_filters=channels[i],
if_act=False,
name=name + '_layer_' + str(i + 1) + '_' + str(j + 1))
y = fluid.layers.resize_bilinear(input=y, out_shape=shape)
residual = fluid.layers.elementwise_add(
x=residual, y=y, act=None)
elif j < i:
y = x[j]
for k in range(i - j):
if k == i - j - 1:
y = self._conv_bn_layer(
y,
filter_size=3,
num_filters=channels[i],
stride=2,
if_act=False,
name=name + '_layer_' + str(i + 1) + '_' +
str(j + 1) + '_' + str(k + 1))
else:
y = self._conv_bn_layer(
y,
filter_size=3,
num_filters=channels[j],
stride=2,
name=name + '_layer_' + str(i + 1) + '_' +
str(j + 1) + '_' + str(k + 1))
residual = fluid.layers.elementwise_add(
x=residual, y=y, act=None)
residual = fluid.layers.relu(residual)
out.append(residual)
return out
def _branches(self, x, block_num, channels, name=None):
out = []
for i in range(len(channels)):
residual = x[i]
for j in range(block_num[i]):
residual = self._basic_block(
residual,
channels[i],
name=name + '_branch_layer_' + str(i + 1) + '_' +
str(j + 1))
out.append(residual)
return out
def _high_resolution_module(self,
x,
blocks,
channels,
multi_scale_output=True,
name=None):
residual = self._branches(x, blocks, channels, name=name)
out = self._fuse_layers(
residual,
channels,
multi_scale_output=multi_scale_output,
name=name)
return out
def _transition_layer(self, x, in_channels, out_channels, name=None):
num_in = len(in_channels)
num_out = len(out_channels)
out = []
for i in range(num_out):
if i < num_in:
if in_channels[i] != out_channels[i]:
residual = self._conv_bn_layer(
x[i],
filter_size=3,
num_filters=out_channels[i],
name=name + '_layer_' + str(i + 1))
out.append(residual)
else:
out.append(x[i])
else:
residual = self._conv_bn_layer(
x[-1],
filter_size=3,
num_filters=out_channels[i],
stride=2,
name=name + '_layer_' + str(i + 1))
out.append(residual)
return out
def _stage(self,
x,
num_modules,
num_blocks,
num_channels,
multi_scale_output=True,
name=None):
out = x
for i in range(num_modules):
if i == num_modules - 1 and multi_scale_output == False:
out = self._high_resolution_module(
out,
num_blocks,
num_channels,
multi_scale_output=False,
name=name + '_' + str(i + 1))
else:
out = self._high_resolution_module(
out, num_blocks, num_channels, name=name + '_' + str(i + 1))
return out
def _layer1(self, input, num_modules, num_blocks, num_channels, name=None):
# num_modules 默认为1,是否增加处理,官网实现为[1],是否对齐。
conv = input
for i in range(num_blocks[0]):
conv = self._bottleneck_block(
conv,
num_filters=num_channels[0],
downsample=True if i == 0 else False,
name=name + '_' + str(i + 1))
return conv
def _high_resolution_net(self, input, num_classes):
x = self._conv_bn_layer(
input=input,
filter_size=3,
num_filters=self.stage1_num_channels[0],
stride=2,
if_act=True,
name='layer1_1')
x = self._conv_bn_layer(
input=x,
filter_size=3,
num_filters=self.stage1_num_channels[0],
stride=2,
if_act=True,
name='layer1_2')
la1 = self._layer1(
x,
self.stage1_num_modules,
self.stage1_num_blocks,
self.stage1_num_channels,
name='layer2')
tr1 = self._transition_layer([la1],
self.stage1_num_channels,
self.stage2_num_channels,
name='tr1')
st2 = self._stage(
tr1,
self.stage2_num_modules,
self.stage2_num_blocks,
self.stage2_num_channels,
name='st2')
tr2 = self._transition_layer(
st2, self.stage2_num_channels, self.stage3_num_channels, name='tr2')
st3 = self._stage(
tr2,
self.stage3_num_modules,
self.stage3_num_blocks,
self.stage3_num_channels,
name='st3')
tr3 = self._transition_layer(
st3, self.stage3_num_channels, self.stage4_num_channels, name='tr3')
st4 = self._stage(
tr3,
self.stage4_num_modules,
self.stage4_num_blocks,
self.stage4_num_channels,
name='st4')
# upsample
shape = fluid.layers.shape(st4[0])[-2:]
st4[1] = fluid.layers.resize_bilinear(st4[1], out_shape=shape)
st4[2] = fluid.layers.resize_bilinear(st4[2], out_shape=shape)
st4[3] = fluid.layers.resize_bilinear(st4[3], out_shape=shape)
out = fluid.layers.concat(st4, axis=1)
last_channels = sum(self.stage4_num_channels)
out = self._conv_bn_layer(
input=out,
filter_size=1,
num_filters=last_channels,
stride=1,
if_act=True,
name='conv-2')
out = fluid.layers.conv2d(
input=out,
num_filters=num_classes,
filter_size=1,
stride=1,
padding=0,
act=None,
param_attr=ParamAttr(initializer=MSRA(), name='conv-1_weights'),
bias_attr=False)
input_shape = fluid.layers.shape(input)[-2:]
out = fluid.layers.resize_bilinear(out, input_shape)
return out
# coding: utf8
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......
# coding: utf8
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import os.path as osp
import sys
import numpy as np
from PIL import Image as Image
import argparse
......@@ -8,35 +24,65 @@ from models import load_model
def parse_args():
parser = argparse.ArgumentParser(description='RemoteSensing predict')
parser.add_argument(
'--single_img',
dest='single_img',
help='single image path to predict',
default=None,
type=str)
parser.add_argument(
'--data_dir',
dest='data_dir',
help='dataset directory',
default=None,
type=str)
parser.add_argument(
'--file_list',
dest='file_list',
help='file name of predict file list',
default=None,
type=str)
parser.add_argument(
'--load_model_dir',
dest='load_model_dir',
help='model load directory',
default=None,
type=str)
parser.add_argument(
'--save_img_dir',
dest='save_img_dir',
help='save directory name of predict results',
default='predict_results',
type=str)
if len(sys.argv) < 2:
parser.print_help()
sys.exit(1)
return parser.parse_args()
args = parse_args()
data_dir = args.data_dir
file_list = args.file_list
single_img = args.single_img
load_model_dir = args.load_model_dir
save_img_dir = args.save_img_dir
if not osp.exists(save_img_dir):
os.makedirs(save_img_dir)
# predict
model = load_model(load_model_dir)
pred_dir = osp.join(load_model_dir, 'predict')
if not osp.exists(pred_dir):
os.mkdir(pred_dir)
val_list = osp.join(data_dir, 'val.txt')
color_map = [0, 0, 0, 255, 255, 255]
with open(val_list) as f:
color_map = [0, 0, 0, 0, 255, 0]
if single_img is not None:
pred = model.predict(single_img)
# 以伪彩色png图片保存预测结果
pred_name = osp.basename(single_img).rstrip('npy') + 'png'
pred_path = osp.join(save_img_dir, pred_name)
pred_mask = Image.fromarray(pred['label_map'].astype(np.uint8), mode='P')
pred_mask.putpalette(color_map)
pred_mask.save(pred_path)
elif (file_list is not None) and (data_dir is not None):
with open(osp.join(data_dir, file_list)) as f:
lines = f.readlines()
for line in lines:
img_path = line.split(' ')[0]
......@@ -47,7 +93,12 @@ with open(val_list) as f:
# 以伪彩色png图片保存预测结果
pred_name = osp.basename(img_path).rstrip('npy') + 'png'
pred_path = osp.join(pred_dir, pred_name)
pred_mask = Image.fromarray(pred.astype(np.uint8), mode='P')
pred_path = osp.join(save_img_dir, pred_name)
pred_mask = Image.fromarray(
pred['label_map'].astype(np.uint8), mode='P')
pred_mask.putpalette(color_map)
pred_mask.save(pred_path)
else:
raise Exception(
'You should either set the parameter single_img, or set the parameters data_dir, file_list.'
)
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os.path as osp
import argparse
import transforms.transforms as T
from readers.reader import Reader
from models import UNet
from models import UNet, HRNet
def parse_args():
parser = argparse.ArgumentParser(description='RemoteSensing training')
parser.add_argument(
'--model_type',
dest='model_type',
help="Model type for traing, which is one of ('unet', 'hrnet')",
type=str,
default='hrnet')
parser.add_argument(
'--data_dir',
dest='data_dir',
......@@ -43,7 +64,6 @@ def parse_args():
args = parse_args()
data_dir = args.data_dir
save_dir = args.save_dir
channel = args.channel
......@@ -52,17 +72,9 @@ train_batch_size = args.train_batch_size
lr = args.lr
# 定义训练和验证时的transforms
train_transforms = T.Compose([
T.RandomVerticalFlip(0.5),
T.RandomHorizontalFlip(0.5),
T.ResizeStepScaling(0.5, 2.0, 0.25),
T.RandomPaddingCrop(256),
T.Normalize(mean=[0.5] * channel, std=[0.5] * channel),
])
train_transforms = T.Compose([T.RandomHorizontalFlip(0.5), T.Normalize()])
eval_transforms = T.Compose([
T.Normalize(mean=[0.5] * channel, std=[0.5] * channel),
])
eval_transforms = T.Compose([T.Normalize()])
train_list = osp.join(data_dir, 'train.txt')
val_list = osp.join(data_dir, 'val.txt')
......@@ -74,23 +86,30 @@ train_reader = Reader(
file_list=train_list,
label_list=label_list,
transforms=train_transforms,
num_workers=8,
buffer_size=16,
shuffle=True,
parallel_method='thread')
shuffle=True)
eval_reader = Reader(
data_dir=data_dir,
file_list=val_list,
label_list=label_list,
transforms=eval_transforms,
num_workers=8,
buffer_size=16,
shuffle=False,
parallel_method='thread')
transforms=eval_transforms)
model = UNet(
num_classes=2, input_channel=channel, use_bce_loss=True, use_dice_loss=True)
if args.model_type == 'unet':
model = UNet(
num_classes=2,
input_channel=channel,
use_bce_loss=True,
use_dice_loss=True)
elif args.model_type == 'hrnet':
model = HRNet(
num_classes=2,
input_channel=channel,
use_bce_loss=True,
use_dice_loss=True)
else:
raise ValueError(
"--model_type: {} is set wrong, it shold be one of ('unet', "
"'hrnet')".format(args.model_type))
model.train(
num_epochs=num_epochs,
......@@ -100,7 +119,5 @@ model.train(
save_interval_epochs=5,
log_interval_steps=10,
save_dir=save_dir,
pretrain_weights=None,
optimizer=None,
learning_rate=lr,
use_vdl=True)
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
......
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......
# coding: utf8
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
......
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -143,3 +143,14 @@ class ConfusionMatrix(object):
kappa = (po - pe) / (1 - pe)
return kappa
def precision_recall(self):
'''
precision, recall of foreground(value=1) for 2 categories
'''
TP = self.confusion_matrix[1, 1]
FN = self.confusion_matrix[1, 0]
FP = self.confusion_matrix[0, 1]
recall = TP / (TP + FN)
precision = TP / (TP + FP)
return precision, recall
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os.path as osp
......
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -12,13 +13,10 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import time
import os
import os.path as osp
import numpy as np
import six
import yaml
import math
from . import logging
......@@ -204,11 +202,9 @@ def load_pretrain_weights(exe, main_prog, weights_dir, fuse_bn=False):
vars_to_load.append(var)
logging.debug("Weight {} will be load".format(var.name))
fluid.io.load_vars(
executor=exe,
dirname=weights_dir,
main_program=main_prog,
vars=vars_to_load)
params_dict = fluid.io.load_program_state(
weights_dir, var_list=vars_to_load)
fluid.io.set_program_state(main_prog, params_dict)
if len(vars_to_load) == 0:
logging.warning(
"There is no pretrain weights loaded, maybe you should check you pretrain model!"
......
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# -*- coding: utf-8 -*-
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from utils.util import AttrDict, merge_cfg_from_args, get_arguments
import os
......@@ -6,13 +20,13 @@ args = get_arguments()
cfg = AttrDict()
# 待预测图像所在路径
cfg.data_dir = os.path.join(args.example , "data", "test_images")
cfg.data_dir = os.path.join(args.example, "data", "test_images")
# 待预测图像名称列表
cfg.data_list_file = os.path.join(args.example , "data", "test.txt")
cfg.data_list_file = os.path.join(args.example, "data", "test.txt")
# 模型加载路径
cfg.model_path = os.path.join(args.example , "model")
cfg.model_path = os.path.join(args.example, "model")
# 预测结果保存路径
cfg.vis_dir = os.path.join(args.example , "result")
cfg.vis_dir = os.path.join(args.example, "result")
# 预测类别数
cfg.class_num = 2
......
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
......
# -*- coding: utf-8 -*-
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import cv2
import numpy as np
......@@ -12,10 +26,11 @@ config = importlib.import_module('config')
cfg = getattr(config, 'cfg')
# paddle垃圾回收策略FLAG,ACE2P模型较大,当显存不够时建议开启
os.environ['FLAGS_eager_delete_tensor_gb']='0.0'
os.environ['FLAGS_eager_delete_tensor_gb'] = '0.0'
import paddle.fluid as fluid
# 预测数据集类
class TestDataSet():
def __init__(self):
......@@ -40,7 +55,7 @@ class TestDataSet():
def preprocess(self, img):
# 图像预处理
if cfg.example == 'ACE2P':
reader = importlib.import_module(args.example+'.reader')
reader = importlib.import_module(args.example + '.reader')
ACE2P_preprocess = getattr(reader, 'preprocess')
img = ACE2P_preprocess(img)
else:
......@@ -56,10 +71,10 @@ class TestDataSet():
img_path = self.data_list[index]
img = cv2.imread(img_path, cv2.IMREAD_COLOR)
if img is None:
return img, img,img_path, None
return img, img, img_path, None
img_name = img_path.split(os.sep)[-1]
name_prefix = img_name.replace('.'+img_name.split('.')[-1],'')
name_prefix = img_name.replace('.' + img_name.split('.')[-1], '')
img_shape = img.shape[:2]
img_process = self.preprocess(img)
......@@ -94,24 +109,29 @@ def infer():
# 预测
if cfg.example == 'ACE2P':
# ACE2P模型使用多尺度预测
reader = importlib.import_module(args.example+'.reader')
reader = importlib.import_module(args.example + '.reader')
multi_scale_test = getattr(reader, 'multi_scale_test')
parsing, logits = multi_scale_test(exe, test_prog, feed_name, fetch_list, image, im_shape)
parsing, logits = multi_scale_test(exe, test_prog, feed_name,
fetch_list, image, im_shape)
else:
# HumanSeg,RoadLine模型单尺度预测
result = exe.run(program=test_prog, feed={feed_name[0]: image}, fetch_list=fetch_list)
result = exe.run(
program=test_prog,
feed={feed_name[0]: image},
fetch_list=fetch_list)
parsing = np.argmax(result[0][0], axis=0)
parsing = cv2.resize(parsing.astype(np.uint8), im_shape[::-1])
# 预测结果保存
result_path = os.path.join(cfg.vis_dir, im_name + '.png')
if cfg.example == 'HumanSeg':
logits = result[0][0][1]*255
logits = result[0][0][1] * 255
logits = cv2.resize(logits, im_shape[::-1])
ret, logits = cv2.threshold(logits, thresh, 0, cv2.THRESH_TOZERO)
logits = 255 *(logits - thresh)/(255 - thresh)
logits = 255 * (logits - thresh) / (255 - thresh)
# 将分割结果添加到alpha通道
rgba = np.concatenate((ori_img, np.expand_dims(logits, axis=2)), axis=2)
rgba = np.concatenate((ori_img, np.expand_dims(logits, axis=2)),
axis=2)
cv2.imwrite(result_path, rgba)
else:
output_im = PILImage.fromarray(np.asarray(parsing, dtype=np.uint8))
......
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
## Created by: RainbowSecret
## Microsoft Research
## yuyua@microsoft.com
## Copyright (c) 2018
##
## This source code is licensed under the MIT-style license found in the
## LICENSE file in the root directory of this source tree
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
......
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import argparse
import os
def get_arguments():
parser = argparse.ArgumentParser()
parser.add_argument("--use_gpu",
action="store_true",
help="Use gpu or cpu to test.")
parser.add_argument('--example',
type=str,
help='RoadLine, HumanSeg or ACE2P')
parser.add_argument(
"--use_gpu", action="store_true", help="Use gpu or cpu to test.")
parser.add_argument(
'--example', type=str, help='RoadLine, HumanSeg or ACE2P')
return parser.parse_args()
......@@ -34,6 +48,7 @@ class AttrDict(dict):
else:
self[name] = value
def merge_cfg_from_args(args, cfg):
"""Merge config keys, values in args into the global config."""
for k, v in vars(args).items():
......@@ -44,4 +59,3 @@ def merge_cfg_from_args(args, cfg):
value = v
if value is not None:
cfg[k] = value
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
......@@ -20,6 +21,8 @@ from PIL import Image
import glob
LOCAL_PATH = os.path.dirname(os.path.abspath(__file__))
def remove_colormap(filename):
gray_anno = np.array(Image.open(filename))
return gray_anno
......@@ -30,6 +33,7 @@ def save_annotation(annotation, filename):
annotation = Image.fromarray(annotation)
annotation.save(filename)
def convert_list(origin_file, seg_file, output_folder):
with open(seg_file, 'w') as fid_seg:
with open(origin_file) as fid_ori:
......@@ -43,6 +47,7 @@ def convert_list(origin_file, seg_file, output_folder):
new_line = ' '.join([img_name, anno_name])
fid_seg.write(new_line + "\n")
if __name__ == "__main__":
pascal_root = "./VOCtrainval_11-May-2012/VOC2012"
pascal_root = os.path.join(LOCAL_PATH, pascal_root)
......@@ -67,5 +72,5 @@ if __name__ == "__main__":
convert_list(train_path, train_path.replace('txt', 'list'), output_folder)
convert_list(val_path, val_path.replace('txt', 'list'), output_folder)
convert_list(trainval_path, trainval_path.replace('txt', 'list'), output_folder)
convert_list(trainval_path, trainval_path.replace('txt', 'list'),
output_folder)
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
......@@ -28,12 +29,12 @@ from convert_voc2012 import remove_colormap
from convert_voc2012 import save_annotation
def download_VOC_dataset(savepath, extrapath):
url = "https://paddleseg.bj.bcebos.com/dataset/VOCtrainval_11-May-2012.tar"
download_file_and_uncompress(
url=url, savepath=savepath, extrapath=extrapath)
if __name__ == "__main__":
download_VOC_dataset(LOCAL_PATH, LOCAL_PATH)
print("Dataset download finish!")
......@@ -61,5 +62,5 @@ if __name__ == "__main__":
convert_list(train_path, train_path.replace('txt', 'list'), output_folder)
convert_list(val_path, val_path.replace('txt', 'list'), output_folder)
convert_list(trainval_path, trainval_path.replace('txt', 'list'), output_folder)
convert_list(trainval_path, trainval_path.replace('txt', 'list'),
output_folder)
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
......
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
......
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
......
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
......
......@@ -79,7 +79,7 @@ DEPLOY:
### 5.2 执行预测程序
在终端输入以下命令进行预测:
```bash
python infer.py --conf=/path/to/deploy.yaml --input_dir/path/to/images_directory --use_pr=False
python infer.py --conf=/path/to/deploy.yaml --input_dir/path/to/images_directory
```
参数说明如下:
......@@ -87,9 +87,6 @@ python infer.py --conf=/path/to/deploy.yaml --input_dir/path/to/images_directory
|-------|-------|----------|
| conf | Yes|模型配置的Yaml文件路径 |
| input_dir |Yes| 需要预测的图片目录 |
| use_pr |No|是否使用优化模型,默认为False|
* 优化模型:使用`PaddleSeg 0.3.0`版导出的为优化模型, 此前版本导出的模型即为未优化版本。优化模型把图像的预处理以及后处理部分融入到模型网络中使用`GPU` 完成,相比原来`CPU` 中的处理提升了计算性能。
**注意**: 如果硬件支持且安装的是从源码编译集成`TensorRT``PaddlePaddle`, 则可以使用参数`--trt_mode=fp16` 表示开启`FP16` 精度优化, 使用`trt_mode=fp32` 表示使用`FP32` 精度。
......
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -29,9 +29,9 @@ from concurrent.futures import ThreadPoolExecutor, as_completed
gflags.DEFINE_string("conf", default="", help="Configuration File Path")
gflags.DEFINE_string("input_dir", default="", help="Directory of Input Images")
gflags.DEFINE_boolean("use_pr", default=False, help="Use optimized model")
gflags.DEFINE_string("trt_mode", default="", help="Use optimized model")
gflags.DEFINE_string("ext", default=".jpeg|.jpg", help="Input Image File Extensions")
gflags.DEFINE_string(
"ext", default=".jpeg|.jpg", help="Input Image File Extensions")
gflags.FLAGS = gflags.FLAGS
......@@ -103,6 +103,9 @@ class DeployConfig:
self.batch_size = deploy_conf["BATCH_SIZE"]
# 9. channels
self.channels = deploy_conf["CHANNELS"]
# 10. use_pr
self.use_pr = deploy_conf["USE_PR"]
class ImageReader:
......@@ -257,23 +260,24 @@ class Predictor:
# record starting time point
total_start = time.time()
batch_size = self.config.batch_size
use_pr = self.config.use_pr
for i in range(0, len(images), batch_size):
real_batch_size = batch_size
if i + batch_size >= len(images):
real_batch_size = len(images) - i
reader_start = time.time()
img_datas = self.image_reader.process(images[i:i + real_batch_size],
gflags.FLAGS.use_pr)
use_pr)
input_data = np.concatenate([item[1] for item in img_datas])
input_data = self.create_tensor(
input_data, real_batch_size, use_pr=gflags.FLAGS.use_pr)
input_data, real_batch_size, use_pr=use_pr)
reader_end = time.time()
infer_start = time.time()
output_data = self.predictor.run(input_data)[0]
infer_end = time.time()
output_data = output_data.as_ndarray()
post_start = time.time()
self.output_result(img_datas, output_data, gflags.FLAGS.use_pr)
self.output_result(img_datas, output_data, use_pr)
post_end = time.time()
reader_time += (reader_end - reader_start)
infer_time += (infer_end - infer_start)
......
......@@ -76,12 +76,6 @@
<p>图5 格式转换后的数据集目录的结构示意图</p>
</div>
* 运行转换脚本需要依赖labelme和pillow,如未安装,请先安装。Labelme的具体安装流程请参见[官方安装指南](https://github.com/wkentaro/labelme)。Pillow的安装:
```shell
pip install pillow
```
* 运行以下代码,将标注后的数据转换成满足以上格式的数据集:
```
......
......@@ -86,12 +86,6 @@ LableMe产出的真值文件可参考我们给出的文件夹[docs/annotation/la
<p>图7 格式转换后的数据集目录的结构示意图</p>
</div>
* 运行转换脚本需要依赖labelme和pillow,如未安装,请先安装。Labelme的具体安装流程请参见[官方安装指南](https://github.com/wkentaro/labelme)。Pillow的安装:
```shell
pip install pillow
```
* 运行以下代码,将标注后的数据转换成满足以上格式的数据集:
```
......
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
......@@ -427,12 +440,17 @@ def max_img_size_statistics():
logger.info("max width and max height of images are ({},{})".format(
max_width, max_height))
def num_classes_loss_matching_check():
loss_type = cfg.SOLVER.LOSS
num_classes = cfg.DATASET.NUM_CLASSES
if num_classes > 2 and (("dice_loss" in loss_type) or ("bce_loss" in loss_type)):
logger.info(error_print("loss check."
" Dice loss and bce loss is only applicable to binary classfication"))
if num_classes > 2 and (("dice_loss" in loss_type) or
("bce_loss" in loss_type)):
logger.info(
error_print(
"loss check."
" Dice loss and bce loss is only applicable to binary classfication"
))
else:
logger.info(correct_print("loss check"))
......
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is based on https://github.com/fchollet/keras/blob/master/keras/utils/data_utils.py
"""
......
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -22,13 +22,9 @@ import os
os.environ['FLAGS_eager_delete_tensor_gb'] = "0.0"
import sys
import time
import argparse
import functools
import pprint
import cv2
import numpy as np
import paddle
import paddle.fluid as fluid
from utils.config import cfg
......@@ -116,6 +112,9 @@ def evaluate(cfg, ckpt_dir=None, use_gpu=False, use_mpio=False, **kwargs):
if ckpt_dir is not None:
print('load test model:', ckpt_dir)
try:
fluid.load(test_prog, os.path.join(ckpt_dir, 'model'), exe)
except:
fluid.io.load_params(exe, ckpt_dir, main_program=test_prog)
# Use streaming confusion matrix to calculate mean_iou
......
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -49,10 +49,11 @@ def parse_args():
sys.exit(1)
return parser.parse_args()
def export_inference_config():
deploy_cfg = '''DEPLOY:
USE_GPU : 1
USE_PR : 1
USE_PR : 0
MODEL_PATH : "%s"
MODEL_FILENAME : "%s"
PARAMS_FILENAME : "%s"
......@@ -66,9 +67,8 @@ def export_inference_config():
PREDICTOR_MODE : "ANALYSIS"
BATCH_SIZE : 1
''' % (cfg.FREEZE.SAVE_DIR, cfg.FREEZE.MODEL_FILENAME,
cfg.FREEZE.PARAMS_FILENAME, cfg.EVAL_CROP_SIZE,
cfg.MEAN, cfg.STD, cfg.DATASET.IMAGE_TYPE,
cfg.DATASET.NUM_CLASSES, len(cfg.STD))
cfg.FREEZE.PARAMS_FILENAME, cfg.EVAL_CROP_SIZE, cfg.MEAN, cfg.STD,
cfg.DATASET.IMAGE_TYPE, cfg.DATASET.NUM_CLASSES, len(cfg.STD))
if not os.path.exists(cfg.FREEZE.SAVE_DIR):
os.mkdir(cfg.FREEZE.SAVE_DIR)
yaml_path = os.path.join(cfg.FREEZE.SAVE_DIR, 'deploy.yaml')
......@@ -94,7 +94,13 @@ def export_inference_model(args):
infer_prog = infer_prog.clone(for_test=True)
if os.path.exists(cfg.TEST.TEST_MODEL):
fluid.io.load_params(exe, cfg.TEST.TEST_MODEL, main_program=infer_prog)
print('load test model:', cfg.TEST.TEST_MODEL)
try:
fluid.load(infer_prog, os.path.join(cfg.TEST.TEST_MODEL, 'model'),
exe)
except:
fluid.io.load_params(
exe, cfg.TEST.TEST_MODEL, main_program=infer_prog)
else:
print("TEST.TEST_MODEL diretory is empty!")
exit(-1)
......
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -217,9 +217,9 @@ class ResNet():
name=None):
if self.stem == 'pspnet':
bias_attr=ParamAttr(name=name + "_biases")
bias_attr = ParamAttr(name=name + "_biases")
else:
bias_attr=False
bias_attr = False
conv = fluid.layers.conv2d(
input=input,
......@@ -238,13 +238,15 @@ class ResNet():
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
return fluid.layers.batch_norm(input=conv,
return fluid.layers.batch_norm(
input=conv,
act=act,
name=bn_name + '.output.1',
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance', )
moving_variance_name=bn_name + '_variance',
)
def shortcut(self, input, ch_out, stride, is_first, name):
ch_in = input.shape[1]
......
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -55,7 +55,8 @@ class VGGNet():
channels = [64, 128, 256, 512, 512]
conv = input
for i in range(len(nums)):
conv = self.conv_block(conv, channels[i], nums[i], name="conv" + str(i + 1) + "_")
conv = self.conv_block(
conv, channels[i], nums[i], name="conv" + str(i + 1) + "_")
layers_count += nums[i]
if check_points(layers_count, decode_points):
short_cuts[layers_count] = conv
......
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -111,53 +111,6 @@ def sigmoid_to_softmax(logit):
return logit
def export_preprocess(image):
"""导出模型的预处理流程"""
image = fluid.layers.transpose(image, [0, 3, 1, 2])
origin_shape = fluid.layers.shape(image)[-2:]
# 不同AUG_METHOD方法的resize
if cfg.AUG.AUG_METHOD == 'unpadding':
h_fix = cfg.AUG.FIX_RESIZE_SIZE[1]
w_fix = cfg.AUG.FIX_RESIZE_SIZE[0]
image = fluid.layers.resize_bilinear(
image, out_shape=[h_fix, w_fix], align_corners=False, align_mode=0)
elif cfg.AUG.AUG_METHOD == 'rangescaling':
size = cfg.AUG.INF_RESIZE_VALUE
value = fluid.layers.reduce_max(origin_shape)
scale = float(size) / value.astype('float32')
image = fluid.layers.resize_bilinear(
image, scale=scale, align_corners=False, align_mode=0)
# 存储resize后图像shape
valid_shape = fluid.layers.shape(image)[-2:]
# padding到eval_crop_size大小
width = cfg.EVAL_CROP_SIZE[0]
height = cfg.EVAL_CROP_SIZE[1]
pad_target = fluid.layers.assign(
np.array([height, width]).astype('float32'))
up = fluid.layers.assign(np.array([0]).astype('float32'))
down = pad_target[0] - valid_shape[0]
left = up
right = pad_target[1] - valid_shape[1]
paddings = fluid.layers.concat([up, down, left, right])
paddings = fluid.layers.cast(paddings, 'int32')
image = fluid.layers.pad2d(image, paddings=paddings, pad_value=127.5)
# normalize
mean = np.array(cfg.MEAN).reshape(1, len(cfg.MEAN), 1, 1)
mean = fluid.layers.assign(mean.astype('float32'))
std = np.array(cfg.STD).reshape(1, len(cfg.STD), 1, 1)
std = fluid.layers.assign(std.astype('float32'))
image = (image / 255 - mean) / std
# 使后面的网络能通过类似image.shape获取特征图的shape
image = fluid.layers.reshape(
image, shape=[-1, cfg.DATASET.DATA_DIM, height, width])
return image, valid_shape, origin_shape
def build_model(main_prog, start_prog, phase=ModelPhase.TRAIN):
if not ModelPhase.is_valid_phase(phase):
raise ValueError("ModelPhase {} is not valid!".format(phase))
......@@ -176,21 +129,7 @@ def build_model(main_prog, start_prog, phase=ModelPhase.TRAIN):
with fluid.unique_name.guard():
# 在导出模型的时候,增加图像标准化预处理,减小预测部署时图像的处理流程
# 预测部署时只须对输入图像增加batch_size维度即可
if ModelPhase.is_predict(phase):
if cfg.SLIM.PREPROCESS:
image = fluid.data(
name='image', shape=image_shape, dtype='float32')
else:
origin_image = fluid.data(
name='image',
shape=[-1, -1, -1, cfg.DATASET.DATA_DIM],
dtype='float32')
image, valid_shape, origin_shape = export_preprocess(
origin_image)
else:
image = fluid.data(
name='image', shape=image_shape, dtype='float32')
image = fluid.data(name='image', shape=image_shape, dtype='float32')
label = fluid.data(name='label', shape=grt_shape, dtype='int32')
mask = fluid.data(name='mask', shape=grt_shape, dtype='int32')
......@@ -223,6 +162,7 @@ def build_model(main_prog, start_prog, phase=ModelPhase.TRAIN):
raise Exception(
"softmax loss or lovasz softmax loss can not combine with bce loss or dice loss or lovasz hinge loss."
)
cfg.PHASE = phase
logits = seg_model(image, class_num)
# 根据选择的loss函数计算相应的损失函数
......@@ -292,22 +232,8 @@ def build_model(main_prog, start_prog, phase=ModelPhase.TRAIN):
else:
logit = softmax(logit)
# 获取有效部分
if cfg.SLIM.PREPROCESS:
return image, logit
else:
logit = fluid.layers.slice(
logit, axes=[2, 3], starts=[0, 0], ends=valid_shape)
logit = fluid.layers.resize_bilinear(
logit,
out_shape=origin_shape,
align_corners=False,
align_mode=0)
logit = fluid.layers.argmax(logit, axis=1)
return origin_image, logit
if class_num == 1:
out = sigmoid_to_softmax(logit)
out = fluid.layers.transpose(out, [0, 2, 3, 1])
......
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -25,12 +25,15 @@ from models.libs.model_libs import separate_conv
from utils.config import cfg
def learning_to_downsample(x, dw_channels1=32, dw_channels2=48, out_channels=64):
def learning_to_downsample(x, dw_channels1=32, dw_channels2=48,
out_channels=64):
x = relu(bn(conv(x, dw_channels1, 3, 2)))
with scope('dsconv1'):
x = separate_conv(x, dw_channels2, stride=2, filter=3, act=fluid.layers.relu)
x = separate_conv(
x, dw_channels2, stride=2, filter=3, act=fluid.layers.relu)
with scope('dsconv2'):
x = separate_conv(x, out_channels, stride=2, filter=3, act=fluid.layers.relu)
x = separate_conv(
x, out_channels, stride=2, filter=3, act=fluid.layers.relu)
return x
......@@ -43,7 +46,9 @@ def dropout2d(input, prob, is_train=False):
return input
channels = input.shape[1]
keep_prob = 1.0 - prob
random_tensor = keep_prob + fluid.layers.uniform_random_batch_size_like(input, [-1, channels, 1, 1], min=0., max=1.)
shape = fluid.layers.shape(input)
random_tensor = keep_prob + fluid.layers.uniform_random(
[shape[0], channels, 1, 1], min=0., max=1.)
binary_tensor = fluid.layers.floor(random_tensor)
output = input / keep_prob * binary_tensor
return output
......@@ -136,18 +141,23 @@ def psp_module(input, out_features):
for size in sizes:
psp_name = "psp" + str(size)
with scope(psp_name):
pool = fluid.layers.adaptive_pool2d(input,
pool = fluid.layers.adaptive_pool2d(
input,
pool_size=[size, size],
pool_type='avg',
name=psp_name + '_adapool')
data = conv(pool, out_features,
data = conv(
pool,
out_features,
filter_size=1,
bias_attr=False,
name=psp_name + '_conv')
data_bn = bn(data, act='relu')
interp = fluid.layers.resize_bilinear(data_bn,
interp = fluid.layers.resize_bilinear(
data_bn,
out_shape=input.shape[2:],
name=psp_name + '_interp', align_mode=0)
name=psp_name + '_interp',
align_mode=0)
cat_layers.append(interp)
cat_layers = [input] + cat_layers
out = fluid.layers.concat(cat_layers, axis=1, name='psp_cat')
......@@ -158,7 +168,11 @@ def psp_module(input, out_features):
class FeatureFusionModule:
"""Feature fusion module"""
def __init__(self, higher_in_channels, lower_in_channels, out_channels, scale_factor=4):
def __init__(self,
higher_in_channels,
lower_in_channels,
out_channels,
scale_factor=4):
self.higher_in_channels = higher_in_channels
self.lower_in_channels = lower_in_channels
self.out_channels = out_channels
......@@ -166,14 +180,19 @@ class FeatureFusionModule:
def net(self, higher_res_feature, lower_res_feature):
h, w = higher_res_feature.shape[2:]
lower_res_feature = fluid.layers.resize_bilinear(lower_res_feature, [h, w], align_mode=0)
lower_res_feature = fluid.layers.resize_bilinear(
lower_res_feature, [h, w], align_mode=0)
with scope('dwconv'):
lower_res_feature = relu(bn(conv(lower_res_feature, self.out_channels, 1)))#(lower_res_feature)
lower_res_feature = relu(
bn(conv(lower_res_feature, self.out_channels,
1))) #(lower_res_feature)
with scope('conv_lower_res'):
lower_res_feature = bn(conv(lower_res_feature, self.out_channels, 1, bias_attr=True))
lower_res_feature = bn(
conv(lower_res_feature, self.out_channels, 1, bias_attr=True))
with scope('conv_higher_res'):
higher_res_feature = bn(conv(higher_res_feature, self.out_channels, 1, bias_attr=True))
higher_res_feature = bn(
conv(higher_res_feature, self.out_channels, 1, bias_attr=True))
out = higher_res_feature + lower_res_feature
return relu(out)
......@@ -182,8 +201,12 @@ class FeatureFusionModule:
class GlobalFeatureExtractor():
"""Global feature extractor module"""
def __init__(self, in_channels=64, block_channels=(64, 96, 128), out_channels=128,
t=6, num_blocks=(3, 3, 3)):
def __init__(self,
in_channels=64,
block_channels=(64, 96, 128),
out_channels=128,
t=6,
num_blocks=(3, 3, 3)):
self.in_channels = in_channels
self.block_channels = block_channels
self.out_channels = out_channels
......@@ -191,12 +214,15 @@ class GlobalFeatureExtractor():
self.num_blocks = num_blocks
def net(self, x):
x, _ = inverted_blocks(x, self.in_channels, self.t, self.block_channels[0],
self.num_blocks[0], 2, 'inverted_block_1')
x, _ = inverted_blocks(x, self.block_channels[0], self.t, self.block_channels[1],
self.num_blocks[1], 2, 'inverted_block_2')
x, _ = inverted_blocks(x, self.block_channels[1], self.t, self.block_channels[2],
self.num_blocks[2], 1, 'inverted_block_3')
x, _ = inverted_blocks(x, self.in_channels, self.t,
self.block_channels[0], self.num_blocks[0], 2,
'inverted_block_1')
x, _ = inverted_blocks(x, self.block_channels[0], self.t,
self.block_channels[1], self.num_blocks[1], 2,
'inverted_block_2')
x, _ = inverted_blocks(x, self.block_channels[1], self.t,
self.block_channels[2], self.num_blocks[2], 1,
'inverted_block_3')
x = psp_module(x, self.block_channels[2] // 4)
with scope('out'):
x = relu(bn(conv(x, self.out_channels, 1)))
......@@ -213,10 +239,21 @@ class Classifier:
def net(self, x):
with scope('dsconv1'):
x = separate_conv(x, self.dw_channels, stride=self.stride, filter=3, act=fluid.layers.relu)
x = separate_conv(
x,
self.dw_channels,
stride=self.stride,
filter=3,
act=fluid.layers.relu)
with scope('dsconv2'):
x = separate_conv(x, self.dw_channels, stride=self.stride, filter=3, act=fluid.layers.relu)
x = dropout2d(x, 0.1, is_train=cfg.PHASE=='train')
x = separate_conv(
x,
self.dw_channels,
stride=self.stride,
filter=3,
act=fluid.layers.relu)
x = dropout2d(x, 0.1, is_train=cfg.PHASE == 'train')
x = conv(x, self.num_classes, 1, bias_attr=True)
return x
......@@ -233,7 +270,8 @@ def fast_scnn(img, num_classes):
size = img.shape[2:]
classifier = Classifier(128, num_classes)
global_feature_extractor = GlobalFeatureExtractor(64, [64, 96, 128], 128, 6, [3, 3, 3])
global_feature_extractor = GlobalFeatureExtractor(64, [64, 96, 128], 128, 6,
[3, 3, 3])
feature_fusion = FeatureFusionModule(64, 128, 128)
with scope('learning_to_downsample'):
......@@ -249,15 +287,18 @@ def fast_scnn(img, num_classes):
if len(cfg.MODEL.MULTI_LOSS_WEIGHT) == 3:
with scope('aux_layer_higher'):
higher_logit = aux_layer(higher_res_features, num_classes)
higher_logit = fluid.layers.resize_bilinear(higher_logit, size, align_mode=0)
higher_logit = fluid.layers.resize_bilinear(
higher_logit, size, align_mode=0)
with scope('aux_layer_lower'):
lower_logit = aux_layer(lower_res_feature, num_classes)
lower_logit = fluid.layers.resize_bilinear(lower_logit, size, align_mode=0)
lower_logit = fluid.layers.resize_bilinear(
lower_logit, size, align_mode=0)
return logit, higher_logit, lower_logit
elif len(cfg.MODEL.MULTI_LOSS_WEIGHT) == 2:
with scope('aux_layer_higher'):
higher_logit = aux_layer(higher_res_features, num_classes)
higher_logit = fluid.layers.resize_bilinear(higher_logit, size, align_mode=0)
higher_logit = fluid.layers.resize_bilinear(
higher_logit, size, align_mode=0)
return logit, higher_logit
return logit
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -25,7 +25,14 @@ from paddle.fluid.param_attr import ParamAttr
from utils.config import cfg
def conv_bn_layer(input, filter_size, num_filters, stride=1, padding=1, num_groups=1, if_act=True, name=None):
def conv_bn_layer(input,
filter_size,
num_filters,
stride=1,
padding=1,
num_groups=1,
if_act=True,
name=None):
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
......@@ -37,10 +44,13 @@ def conv_bn_layer(input, filter_size, num_filters, stride=1, padding=1, num_grou
param_attr=ParamAttr(initializer=MSRA(), name=name + '_weights'),
bias_attr=False)
bn_name = name + '_bn'
bn = fluid.layers.batch_norm(input=conv,
param_attr=ParamAttr(name=bn_name + "_scale",
bn = fluid.layers.batch_norm(
input=conv,
param_attr=ParamAttr(
name=bn_name + "_scale",
initializer=fluid.initializer.Constant(1.0)),
bias_attr=ParamAttr(name=bn_name + "_offset",
bias_attr=ParamAttr(
name=bn_name + "_offset",
initializer=fluid.initializer.Constant(0.0)),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
......@@ -48,26 +58,60 @@ def conv_bn_layer(input, filter_size, num_filters, stride=1, padding=1, num_grou
bn = fluid.layers.relu(bn)
return bn
def basic_block(input, num_filters, stride=1, downsample=False, name=None):
residual = input
conv = conv_bn_layer(input=input, filter_size=3, num_filters=num_filters, stride=stride, name=name + '_conv1')
conv = conv_bn_layer(input=conv, filter_size=3, num_filters=num_filters, if_act=False, name=name + '_conv2')
conv = conv_bn_layer(
input=input,
filter_size=3,
num_filters=num_filters,
stride=stride,
name=name + '_conv1')
conv = conv_bn_layer(
input=conv,
filter_size=3,
num_filters=num_filters,
if_act=False,
name=name + '_conv2')
if downsample:
residual = conv_bn_layer(input=input, filter_size=1, num_filters=num_filters, if_act=False,
residual = conv_bn_layer(
input=input,
filter_size=1,
num_filters=num_filters,
if_act=False,
name=name + '_downsample')
return fluid.layers.elementwise_add(x=residual, y=conv, act='relu')
def bottleneck_block(input, num_filters, stride=1, downsample=False, name=None):
residual = input
conv = conv_bn_layer(input=input, filter_size=1, num_filters=num_filters, name=name + '_conv1')
conv = conv_bn_layer(input=conv, filter_size=3, num_filters=num_filters, stride=stride, name=name + '_conv2')
conv = conv_bn_layer(input=conv, filter_size=1, num_filters=num_filters * 4, if_act=False,
conv = conv_bn_layer(
input=input,
filter_size=1,
num_filters=num_filters,
name=name + '_conv1')
conv = conv_bn_layer(
input=conv,
filter_size=3,
num_filters=num_filters,
stride=stride,
name=name + '_conv2')
conv = conv_bn_layer(
input=conv,
filter_size=1,
num_filters=num_filters * 4,
if_act=False,
name=name + '_conv3')
if downsample:
residual = conv_bn_layer(input=input, filter_size=1, num_filters=num_filters * 4, if_act=False,
residual = conv_bn_layer(
input=input,
filter_size=1,
num_filters=num_filters * 4,
if_act=False,
name=name + '_downsample')
return fluid.layers.elementwise_add(x=residual, y=conv, act='relu')
def fuse_layers(x, channels, multi_scale_output=True, name=None):
out = []
for i in range(len(channels) if multi_scale_output else 1):
......@@ -77,40 +121,64 @@ def fuse_layers(x, channels, multi_scale_output=True, name=None):
height = shape[-2]
for j in range(len(channels)):
if j > i:
y = conv_bn_layer(x[j], filter_size=1, num_filters=channels[i], if_act=False,
y = conv_bn_layer(
x[j],
filter_size=1,
num_filters=channels[i],
if_act=False,
name=name + '_layer_' + str(i + 1) + '_' + str(j + 1))
y = fluid.layers.resize_bilinear(input=y, out_shape=[height, width])
residual = fluid.layers.elementwise_add(x=residual, y=y, act=None)
y = fluid.layers.resize_bilinear(
input=y, out_shape=[height, width])
residual = fluid.layers.elementwise_add(
x=residual, y=y, act=None)
elif j < i:
y = x[j]
for k in range(i - j):
if k == i - j - 1:
y = conv_bn_layer(y, filter_size=3, num_filters=channels[i], stride=2, if_act=False,
name=name + '_layer_' + str(i + 1) + '_' + str(j + 1) + '_' + str(k + 1))
y = conv_bn_layer(
y,
filter_size=3,
num_filters=channels[i],
stride=2,
if_act=False,
name=name + '_layer_' + str(i + 1) + '_' +
str(j + 1) + '_' + str(k + 1))
else:
y = conv_bn_layer(y, filter_size=3, num_filters=channels[j], stride=2,
name=name + '_layer_' + str(i + 1) + '_' + str(j + 1) + '_' + str(k + 1))
residual = fluid.layers.elementwise_add(x=residual, y=y, act=None)
y = conv_bn_layer(
y,
filter_size=3,
num_filters=channels[j],
stride=2,
name=name + '_layer_' + str(i + 1) + '_' +
str(j + 1) + '_' + str(k + 1))
residual = fluid.layers.elementwise_add(
x=residual, y=y, act=None)
residual = fluid.layers.relu(residual)
out.append(residual)
return out
def branches(x, block_num, channels, name=None):
out = []
for i in range(len(channels)):
residual = x[i]
for j in range(block_num):
residual = basic_block(residual, channels[i],
residual = basic_block(
residual,
channels[i],
name=name + '_branch_layer_' + str(i + 1) + '_' + str(j + 1))
out.append(residual)
return out
def high_resolution_module(x, channels, multi_scale_output=True, name=None):
residual = branches(x, 4, channels, name=name)
out = fuse_layers(residual, channels, multi_scale_output=multi_scale_output, name=name)
out = fuse_layers(
residual, channels, multi_scale_output=multi_scale_output, name=name)
return out
def transition_layer(x, in_channels, out_channels, name=None):
num_in = len(in_channels)
num_out = len(out_channels)
......@@ -118,34 +186,52 @@ def transition_layer(x, in_channels, out_channels, name=None):
for i in range(num_out):
if i < num_in:
if in_channels[i] != out_channels[i]:
residual = conv_bn_layer(x[i], filter_size=3, num_filters=out_channels[i],
residual = conv_bn_layer(
x[i],
filter_size=3,
num_filters=out_channels[i],
name=name + '_layer_' + str(i + 1))
out.append(residual)
else:
out.append(x[i])
else:
residual = conv_bn_layer(x[-1], filter_size=3, num_filters=out_channels[i], stride=2,
residual = conv_bn_layer(
x[-1],
filter_size=3,
num_filters=out_channels[i],
stride=2,
name=name + '_layer_' + str(i + 1))
out.append(residual)
return out
def stage(x, num_modules, channels, multi_scale_output=True, name=None):
out = x
for i in range(num_modules):
if i == num_modules - 1 and multi_scale_output == False:
out = high_resolution_module(out, channels, multi_scale_output=False, name=name + '_' + str(i + 1))
out = high_resolution_module(
out,
channels,
multi_scale_output=False,
name=name + '_' + str(i + 1))
else:
out = high_resolution_module(out, channels, name=name + '_' + str(i + 1))
out = high_resolution_module(
out, channels, name=name + '_' + str(i + 1))
return out
def layer1(input, name=None):
conv = input
for i in range(4):
conv = bottleneck_block(conv, num_filters=64, downsample=True if i == 0 else False,
conv = bottleneck_block(
conv,
num_filters=64,
downsample=True if i == 0 else False,
name=name + '_' + str(i + 1))
return conv
def high_resolution_net(input, num_classes):
channels_2 = cfg.MODEL.HRNET.STAGE2.NUM_CHANNELS
......@@ -156,8 +242,20 @@ def high_resolution_net(input, num_classes):
num_modules_3 = cfg.MODEL.HRNET.STAGE3.NUM_MODULES
num_modules_4 = cfg.MODEL.HRNET.STAGE4.NUM_MODULES
x = conv_bn_layer(input=input, filter_size=3, num_filters=64, stride=2, if_act=True, name='layer1_1')
x = conv_bn_layer(input=x, filter_size=3, num_filters=64, stride=2, if_act=True, name='layer1_2')
x = conv_bn_layer(
input=input,
filter_size=3,
num_filters=64,
stride=2,
if_act=True,
name='layer1_1')
x = conv_bn_layer(
input=x,
filter_size=3,
num_filters=64,
stride=2,
if_act=True,
name='layer1_2')
la1 = layer1(x, name='layer2')
tr1 = transition_layer([la1], [256], channels_2, name='tr1')
......@@ -170,18 +268,21 @@ def high_resolution_net(input, num_classes):
# upsample
shape = st4[0].shape
height, width = shape[-2], shape[-1]
st4[1] = fluid.layers.resize_bilinear(
st4[1], out_shape=[height, width])
st4[2] = fluid.layers.resize_bilinear(
st4[2], out_shape=[height, width])
st4[3] = fluid.layers.resize_bilinear(
st4[3], out_shape=[height, width])
st4[1] = fluid.layers.resize_bilinear(st4[1], out_shape=[height, width])
st4[2] = fluid.layers.resize_bilinear(st4[2], out_shape=[height, width])
st4[3] = fluid.layers.resize_bilinear(st4[3], out_shape=[height, width])
out = fluid.layers.concat(st4, axis=1)
last_channels = sum(channels_4)
out = conv_bn_layer(input=out, filter_size=1, num_filters=last_channels, stride=1, if_act=True, name='conv-2')
out= fluid.layers.conv2d(
out = conv_bn_layer(
input=out,
filter_size=1,
num_filters=last_channels,
stride=1,
if_act=True,
name='conv-2')
out = fluid.layers.conv2d(
input=out,
num_filters=num_classes,
filter_size=1,
......@@ -193,7 +294,6 @@ def high_resolution_net(input, num_classes):
out = fluid.layers.resize_bilinear(out, input.shape[2:])
return out
......@@ -201,6 +301,7 @@ def hrnet(input, num_classes):
logit = high_resolution_net(input, num_classes)
return logit
if __name__ == '__main__':
image_shape = [-1, 3, 769, 769]
image = fluid.data(name='image', shape=image_shape, dtype='float32')
......
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -24,6 +24,7 @@ from models.libs.model_libs import avg_pool, conv, bn
from models.backbone.resnet import ResNet as resnet_backbone
from utils.config import cfg
def get_logit_interp(input, num_classes, out_shape, name="logit"):
# 根据类别数决定最后一层卷积输出, 并插值回原始尺寸
param_attr = fluid.ParamAttr(
......@@ -33,16 +34,15 @@ def get_logit_interp(input, num_classes, out_shape, name="logit"):
initializer=fluid.initializer.TruncatedNormal(loc=0.0, scale=0.01))
with scope(name):
logit = conv(input,
logit = conv(
input,
num_classes,
filter_size=1,
param_attr=param_attr,
bias_attr=True,
name=name+'_conv')
name=name + '_conv')
logit_interp = fluid.layers.resize_bilinear(
logit,
out_shape=out_shape,
name=name+'_interp')
logit, out_shape=out_shape, name=name + '_interp')
return logit_interp
......@@ -53,29 +53,32 @@ def psp_module(input, out_features):
# 最后进行一个卷积及BN操作
cat_layers = []
sizes = (1,2,3,6)
sizes = (1, 2, 3, 6)
for size in sizes:
psp_name = "psp" + str(size)
with scope(psp_name):
pool = fluid.layers.adaptive_pool2d(input,
pool = fluid.layers.adaptive_pool2d(
input,
pool_size=[size, size],
pool_type='avg',
name=psp_name+'_adapool')
data = conv(pool, out_features,
name=psp_name + '_adapool')
data = conv(
pool,
out_features,
filter_size=1,
bias_attr=True,
name= psp_name + '_conv')
name=psp_name + '_conv')
data_bn = bn(data, act='relu')
interp = fluid.layers.resize_bilinear(data_bn,
out_shape=input.shape[2:],
name=psp_name+'_interp')
interp = fluid.layers.resize_bilinear(
data_bn, out_shape=input.shape[2:], name=psp_name + '_interp')
cat_layers.append(interp)
cat_layers = [input] + cat_layers[::-1]
cat = fluid.layers.concat(cat_layers, axis=1, name='psp_cat')
psp_end_name = "psp_end"
with scope(psp_end_name):
data = conv(cat,
data = conv(
cat,
out_features,
filter_size=3,
padding=1,
......@@ -85,6 +88,7 @@ def psp_module(input, out_features):
return out
def resnet(input):
# PSPNET backbone: resnet, 默认resnet50
# end_points: resnet终止层数
......@@ -92,14 +96,14 @@ def resnet(input):
scale = cfg.MODEL.PSPNET.DEPTH_MULTIPLIER
layers = cfg.MODEL.PSPNET.LAYERS
end_points = layers - 1
dilation_dict = {2:2, 3:4}
dilation_dict = {2: 2, 3: 4}
model = resnet_backbone(layers, scale, stem='pspnet')
data, _ = model.net(input,
end_points=end_points,
dilation_dict=dilation_dict)
data, _ = model.net(
input, end_points=end_points, dilation_dict=dilation_dict)
return data
def pspnet(input, num_classes):
# Backbone: ResNet
res = resnet(input)
......@@ -109,4 +113,3 @@ def pspnet(input, num_classes):
# 根据类别数决定最后一层卷积输出, 并插值回原始尺寸
logit = get_logit_interp(dropout, num_classes, input.shape[2:])
return logit
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -71,7 +71,8 @@ class SegDataset(object):
if self.shuffle and cfg.NUM_TRAINERS > 1:
np.random.RandomState(self.shuffle_seed).shuffle(self.all_lines)
num_lines = len(self.all_lines) // cfg.NUM_TRAINERS
self.lines = self.all_lines[num_lines * cfg.TRAINER_ID: num_lines * (cfg.TRAINER_ID + 1)]
self.lines = self.all_lines[num_lines * cfg.TRAINER_ID:num_lines *
(cfg.TRAINER_ID + 1)]
self.shuffle_seed += 1
elif self.shuffle:
np.random.shuffle(self.lines)
......@@ -99,7 +100,8 @@ class SegDataset(object):
if self.shuffle and cfg.NUM_TRAINERS > 1:
np.random.RandomState(self.shuffle_seed).shuffle(self.all_lines)
num_lines = len(self.all_lines) // cfg.NUM_TRAINERS
self.lines = self.all_lines[num_lines * cfg.TRAINER_ID: num_lines * (cfg.TRAINER_ID + 1)]
self.lines = self.all_lines[num_lines * cfg.TRAINER_ID:num_lines *
(cfg.TRAINER_ID + 1)]
self.shuffle_seed += 1
elif self.shuffle:
np.random.shuffle(self.lines)
......
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -21,55 +21,48 @@ import warnings
def parse_args():
parser = argparse.ArgumentParser(
description='PaddleSeg generate file list on cityscapes or your customized dataset.')
parser.add_argument(
'dataset_root',
help='dataset root directory',
type=str
description=
'PaddleSeg generate file list on cityscapes or your customized dataset.'
)
parser.add_argument('dataset_root', help='dataset root directory', type=str)
parser.add_argument(
'--type',
help='dataset type: \n'
'- cityscapes \n'
'- custom(default)',
default="custom",
type=str
)
type=str)
parser.add_argument(
'--separator',
dest='separator',
help='file list separator',
default="|",
type=str
)
type=str)
parser.add_argument(
'--folder',
help='the folder names of images and labels',
type=str,
nargs=2,
default=['images', 'annotations']
)
default=['images', 'annotations'])
parser.add_argument(
'--second_folder',
help='the second-level folder names of train set, validation set, test set',
help=
'the second-level folder names of train set, validation set, test set',
type=str,
nargs='*',
default=['train', 'val', 'test']
)
default=['train', 'val', 'test'])
parser.add_argument(
'--format',
help='data format of images and labels, e.g. jpg or png.',
type=str,
nargs=2,
default=['jpg', 'png']
)
default=['jpg', 'png'])
parser.add_argument(
'--postfix',
help='postfix of images or labels',
type=str,
nargs=2,
default=['', '']
)
default=['', ''])
return parser.parse_args()
......@@ -120,12 +113,14 @@ def generate_list(args):
num_images = len(image_files)
if not label_files:
label_dir = os.path.join(dataset_root, args.folder[1], dataset_split)
label_dir = os.path.join(dataset_root, args.folder[1],
dataset_split)
warnings.warn("No labels in {} !!!".format(label_dir))
num_label = len(label_files)
if num_images != num_label and num_label > 0:
raise Exception("Number of images = {} number of labels = {} \n"
raise Exception(
"Number of images = {} number of labels = {} \n"
"Either number of images is equal to number of labels, "
"or number of labels is equal to 0.\n"
"Please check your dataset!".format(num_images, num_label))
......
# -*- coding: utf-8 -*-
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import argparse
......@@ -11,16 +25,12 @@ from PIL import Image
def parse_args():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument('dir_or_file',
help='input gray label directory or file list path')
parser.add_argument('output_dir',
help='output colorful label directory')
parser.add_argument('--dataset_dir',
help='dataset directory')
parser.add_argument('--file_separator',
help='file list separator')
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
'dir_or_file', help='input gray label directory or file list path')
parser.add_argument('output_dir', help='output colorful label directory')
parser.add_argument('--dataset_dir', help='dataset directory')
parser.add_argument('--file_separator', help='file list separator')
return parser.parse_args()
......
#!/usr/bin/env python
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
......@@ -7,12 +20,11 @@ import glob
import json
import os
import os.path as osp
import numpy as np
import PIL.Image
import labelme
from gray2pseudo_color import get_color_map_list
from labelme2seg import shape2label
def parse_args():
......@@ -89,10 +101,10 @@ def main(args):
img_shape = (data_size['height'], data_size['width'],
data_size['depth'])
lbl = labelme.utils.shapes_to_label(
img_shape=img_shape,
lbl = shape2label(
img_size=img_shape,
shapes=data_shapes,
label_name_to_value=class_name_to_id,
class_name_mapping=class_name_to_id,
)
if osp.splitext(out_png_file)[1] != '.png':
......
#!/usr/bin/env python
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import argparse
import glob
import math
import json
import os
import os.path as osp
import numpy as np
import PIL.Image
import labelme
import PIL.ImageDraw
import cv2
from gray2pseudo_color import get_color_map_list
......@@ -64,12 +78,12 @@ def main(args):
data = json.load(f)
img_file = osp.join(osp.dirname(label_file), data['imagePath'])
img = np.asarray(PIL.Image.open(img_file))
img = np.asarray(cv2.imread(img_file))
lbl = labelme.utils.shapes_to_label(
img_shape=img.shape,
lbl = shape2label(
img_size=img.shape,
shapes=data['shapes'],
label_name_to_value=class_name_to_id,
class_name_mapping=class_name_to_id,
)
if osp.splitext(out_png_file)[1] != '.png':
......@@ -85,6 +99,27 @@ def main(args):
'Please consider using the .npy format.' % out_png_file)
def shape2mask(img_size, points):
label_mask = PIL.Image.fromarray(np.zeros(img_size[:2], dtype=np.uint8))
image_draw = PIL.ImageDraw.Draw(label_mask)
points_list = [tuple(point) for point in points]
assert len(points_list) > 2, 'Polygon must have points more than 2'
image_draw.polygon(xy=points_list, outline=1, fill=1)
return np.array(label_mask, dtype=bool)
def shape2label(img_size, shapes, class_name_mapping):
label = np.zeros(img_size[:2], dtype=np.int32)
for shape in shapes:
points = shape['points']
class_name = shape['label']
shape_type = shape.get('shape_type', None)
class_id = class_name_mapping[class_name]
label_mask = shape2mask(img_size[:2], points)
label[label_mask] = class_id
return label
if __name__ == '__main__':
args = parse_args()
main(args)
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -26,9 +26,7 @@ import argparse
import pprint
import random
import shutil
import functools
import paddle
import numpy as np
import paddle.fluid as fluid
from paddle.fluid import profiler
......@@ -39,10 +37,10 @@ from metrics import ConfusionMatrix
from reader import SegDataset
from models.model_builder import build_model
from models.model_builder import ModelPhase
from models.model_builder import parse_shape_from_file
from eval import evaluate
from vis import visualize
from utils import dist_utils
from utils.load_model_utils import load_pretrained_weights
def parse_args():
......@@ -118,38 +116,7 @@ def parse_args():
return parser.parse_args()
def save_vars(executor, dirname, program=None, vars=None):
"""
Temporary resolution for Win save variables compatability.
Will fix in PaddlePaddle v1.5.2
"""
save_program = fluid.Program()
save_block = save_program.global_block()
for each_var in vars:
# NOTE: don't save the variable which type is RAW
if each_var.type == fluid.core.VarDesc.VarType.RAW:
continue
new_var = save_block.create_var(
name=each_var.name,
shape=each_var.shape,
dtype=each_var.dtype,
type=each_var.type,
lod_level=each_var.lod_level,
persistable=True)
file_path = os.path.join(dirname, new_var.name)
file_path = os.path.normpath(file_path)
save_block.append_op(
type='save',
inputs={'X': [new_var]},
outputs={},
attrs={'file_path': file_path})
executor.run(save_program)
def save_checkpoint(exe, program, ckpt_name):
def save_checkpoint(program, ckpt_name):
"""
Save checkpoint for evaluation or resume training
"""
......@@ -158,29 +125,22 @@ def save_checkpoint(exe, program, ckpt_name):
if not os.path.isdir(ckpt_dir):
os.makedirs(ckpt_dir)
save_vars(
exe,
ckpt_dir,
program,
vars=list(filter(fluid.io.is_persistable, program.list_vars())))
fluid.save(program, os.path.join(ckpt_dir, 'model'))
return ckpt_dir
def load_checkpoint(exe, program):
"""
Load checkpoiont from pretrained model directory for resume training
Load checkpoiont for resuming training
"""
print('Resume model training from:', cfg.TRAIN.RESUME_MODEL_DIR)
if not os.path.exists(cfg.TRAIN.RESUME_MODEL_DIR):
raise ValueError("TRAIN.PRETRAIN_MODEL {} not exist!".format(
cfg.TRAIN.RESUME_MODEL_DIR))
fluid.io.load_persistables(
exe, cfg.TRAIN.RESUME_MODEL_DIR, main_program=program)
model_path = cfg.TRAIN.RESUME_MODEL_DIR
print('Resume model training from:', model_path)
if not os.path.exists(model_path):
raise ValueError(
"TRAIN.PRETRAIN_MODEL {} not exist!".format(model_path))
fluid.load(program, os.path.join(model_path, 'model'), exe)
# Check is path ended by path spearator
if model_path[-1] == os.sep:
model_path = model_path[0:-1]
......@@ -195,7 +155,6 @@ def load_checkpoint(exe, program):
else:
raise ValueError("Resume model path is not valid!")
print("Model checkpoint loaded successfully!")
return begin_epoch
......@@ -247,8 +206,6 @@ def train(cfg):
yield item[0], item[1], item[2]
# Get device environment
# places = fluid.cuda_places() if args.use_gpu else fluid.cpu_places()
# place = places[0]
gpu_id = int(os.environ.get('FLAGS_selected_gpus', 0))
place = fluid.CUDAPlace(gpu_id) if args.use_gpu else fluid.CPUPlace()
places = fluid.cuda_places() if args.use_gpu else fluid.cpu_places()
......@@ -304,42 +261,7 @@ def train(cfg):
begin_epoch = load_checkpoint(exe, train_prog)
# Load pretrained model
elif os.path.exists(cfg.TRAIN.PRETRAINED_MODEL_DIR):
print_info('Pretrained model dir: ', cfg.TRAIN.PRETRAINED_MODEL_DIR)
load_vars = []
load_fail_vars = []
def var_shape_matched(var, shape):
"""
Check whehter persitable variable shape is match with current network
"""
var_exist = os.path.exists(
os.path.join(cfg.TRAIN.PRETRAINED_MODEL_DIR, var.name))
if var_exist:
var_shape = parse_shape_from_file(
os.path.join(cfg.TRAIN.PRETRAINED_MODEL_DIR, var.name))
return var_shape == shape
return False
for x in train_prog.list_vars():
if isinstance(x, fluid.framework.Parameter):
shape = tuple(fluid.global_scope().find_var(
x.name).get_tensor().shape())
if var_shape_matched(x, shape):
load_vars.append(x)
else:
load_fail_vars.append(x)
fluid.io.load_vars(
exe, dirname=cfg.TRAIN.PRETRAINED_MODEL_DIR, vars=load_vars)
for var in load_vars:
print_info("Parameter[{}] loaded sucessfully!".format(var.name))
for var in load_fail_vars:
print_info(
"Parameter[{}] don't exist or shape does not match current network, skip"
" to load it.".format(var.name))
print_info("{}/{} pretrained parameters loaded successfully!".format(
len(load_vars),
len(load_vars) + len(load_fail_vars)))
load_pretrained_weights(exe, train_prog, cfg.TRAIN.PRETRAINED_MODEL_DIR)
else:
print_info(
'Pretrained model dir {} not exists, training from scratch...'.
......@@ -418,12 +340,9 @@ def train(cfg):
step)
log_writer.add_scalar('Train/mean_acc', mean_acc,
step)
log_writer.add_scalar('Train/loss', avg_loss,
step)
log_writer.add_scalar('Train/lr', lr[0],
step)
log_writer.add_scalar('Train/step/sec', speed,
step)
log_writer.add_scalar('Train/loss', avg_loss, step)
log_writer.add_scalar('Train/lr', lr[0], step)
log_writer.add_scalar('Train/step/sec', speed, step)
sys.stdout.flush()
avg_loss = 0.0
cm.zero_matrix()
......@@ -445,12 +364,9 @@ def train(cfg):
).format(epoch, step, lr[0], avg_loss, speed,
calculate_eta(all_step - step, speed)))
if args.use_vdl:
log_writer.add_scalar('Train/loss', avg_loss,
step)
log_writer.add_scalar('Train/lr', lr[0],
step)
log_writer.add_scalar('Train/speed', speed,
step)
log_writer.add_scalar('Train/loss', avg_loss, step)
log_writer.add_scalar('Train/lr', lr[0], step)
log_writer.add_scalar('Train/speed', speed, step)
sys.stdout.flush()
avg_loss = 0.0
timer.restart()
......@@ -470,7 +386,7 @@ def train(cfg):
if (epoch % cfg.TRAIN.SNAPSHOT_EPOCH == 0
or epoch == cfg.SOLVER.NUM_EPOCHS) and cfg.TRAINER_ID == 0:
ckpt_dir = save_checkpoint(exe, train_prog, epoch)
ckpt_dir = save_checkpoint(train_prog, epoch)
if args.do_eval:
print("Evaluation start")
......@@ -480,10 +396,8 @@ def train(cfg):
use_gpu=args.use_gpu,
use_mpio=args.use_mpio)
if args.use_vdl:
log_writer.add_scalar('Evaluate/mean_iou', mean_iou,
step)
log_writer.add_scalar('Evaluate/mean_acc', mean_acc,
step)
log_writer.add_scalar('Evaluate/mean_iou', mean_iou, step)
log_writer.add_scalar('Evaluate/mean_acc', mean_acc, step)
if mean_iou > best_mIoU:
best_mIoU = mean_iou
......@@ -505,7 +419,7 @@ def train(cfg):
# save final model
if cfg.TRAINER_ID == 0:
save_checkpoint(exe, train_prog, 'final')
save_checkpoint(train_prog, 'final')
def main(args):
......
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
......@@ -98,7 +99,7 @@ class SegConfig(dict):
'DATASET.IMAGE_TYPE config error, only support `rgb`, `gray` and `rgba`'
)
if self.MEAN is not None:
self.DATASET.PADDING_VALUE = [x*255.0 for x in self.MEAN]
self.DATASET.PADDING_VALUE = [x * 255.0 for x in self.MEAN]
if not self.TRAIN_CROP_SIZE:
raise ValueError(
......@@ -111,9 +112,12 @@ class SegConfig(dict):
)
# Ensure file list is use UTF-8 encoding
train_sets = codecs.open(self.DATASET.TRAIN_FILE_LIST, 'r', 'utf-8').readlines()
val_sets = codecs.open(self.DATASET.VAL_FILE_LIST, 'r', 'utf-8').readlines()
test_sets = codecs.open(self.DATASET.TEST_FILE_LIST, 'r', 'utf-8').readlines()
train_sets = codecs.open(self.DATASET.TRAIN_FILE_LIST, 'r',
'utf-8').readlines()
val_sets = codecs.open(self.DATASET.VAL_FILE_LIST, 'r',
'utf-8').readlines()
test_sets = codecs.open(self.DATASET.TEST_FILE_LIST, 'r',
'utf-8').readlines()
self.DATASET.TRAIN_TOTAL_IMAGES = len(train_sets)
self.DATASET.VAL_TOTAL_IMAGES = len(val_sets)
self.DATASET.TEST_TOTAL_IMAGES = len(test_sets)
......@@ -122,12 +126,13 @@ class SegConfig(dict):
len(self.MODEL.MULTI_LOSS_WEIGHT) != 3:
self.MODEL.MULTI_LOSS_WEIGHT = [1.0, 0.4, 0.16]
if self.AUG.AUG_METHOD not in ['unpadding', 'stepscaling', 'rangescaling']:
if self.AUG.AUG_METHOD not in [
'unpadding', 'stepscaling', 'rangescaling'
]:
raise ValueError(
'AUG.AUG_METHOD config error, only support `unpadding`, `unpadding` and `rangescaling`'
)
def update_from_list(self, config_list):
if len(config_list) % 2 != 0:
raise ValueError(
......
# -*- coding: utf-8 -*-
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
......
#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
......
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from paddle import fluid
def load_fp16_vars(executor, dirname, program):
load_dirname = os.path.normpath(dirname)
......
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import os.path as osp
import six
import numpy as np
def parse_param_file(param_file, return_shape=True):
from paddle.fluid.proto.framework_pb2 import VarType
f = open(param_file, 'rb')
version = np.fromstring(f.read(4), dtype='int32')
lod_level = np.fromstring(f.read(8), dtype='int64')
for i in range(int(lod_level)):
_size = np.fromstring(f.read(8), dtype='int64')
_ = f.read(_size)
version = np.fromstring(f.read(4), dtype='int32')
tensor_desc = VarType.TensorDesc()
tensor_desc_size = np.fromstring(f.read(4), dtype='int32')
tensor_desc.ParseFromString(f.read(int(tensor_desc_size)))
tensor_shape = tuple(tensor_desc.dims)
if return_shape:
f.close()
return tuple(tensor_desc.dims)
if tensor_desc.data_type != 5:
raise Exception(
"Unexpected data type while parse {}".format(param_file))
data_size = 4
for i in range(len(tensor_shape)):
data_size *= tensor_shape[i]
weight = np.fromstring(f.read(data_size), dtype='float32')
f.close()
return np.reshape(weight, tensor_shape)
def load_pdparams(exe, main_prog, model_dir):
import paddle.fluid as fluid
from paddle.fluid.proto.framework_pb2 import VarType
from paddle.fluid.framework import Program
vars_to_load = list()
vars_not_load = list()
import pickle
with open(osp.join(model_dir, 'model.pdparams'), 'rb') as f:
params_dict = pickle.load(f) if six.PY2 else pickle.load(
f, encoding='latin1')
unused_vars = list()
for var in main_prog.list_vars():
if not isinstance(var, fluid.framework.Parameter):
continue
if var.name not in params_dict:
print("{} is not in saved model".format(var.name))
vars_not_load.append(var.name)
continue
if var.shape != params_dict[var.name].shape:
unused_vars.append(var.name)
vars_not_load.append(var.name)
print(
"[SKIP] Shape of pretrained weight {} doesn't match.(Pretrained: {}, Actual: {})"
.format(var.name, params_dict[var.name].shape, var.shape))
continue
vars_to_load.append(var)
for var_name in unused_vars:
del params_dict[var_name]
fluid.io.set_program_state(main_prog, params_dict)
if len(vars_to_load) == 0:
print(
"There is no pretrain weights loaded, maybe you should check you pretrain model!"
)
else:
print("There are {}/{} varaibles in {} are loaded.".format(
len(vars_to_load),
len(vars_to_load) + len(vars_not_load), model_dir))
def load_pretrained_weights(exe, main_prog, weights_dir):
if not osp.exists(weights_dir):
raise Exception("Path {} not exists.".format(weights_dir))
if osp.exists(osp.join(weights_dir, "model.pdparams")):
return load_pdparams(exe, main_prog, weights_dir)
import paddle.fluid as fluid
vars_to_load = list()
vars_not_load = list()
for var in main_prog.list_vars():
if not isinstance(var, fluid.framework.Parameter):
continue
if not osp.exists(osp.join(weights_dir, var.name)):
print("[SKIP] Pretrained weight {}/{} doesn't exist".format(
weights_dir, var.name))
vars_not_load.append(var)
continue
pretrained_shape = parse_param_file(osp.join(weights_dir, var.name))
actual_shape = tuple(var.shape)
if pretrained_shape != actual_shape:
print(
"[SKIP] Shape of pretrained weight {}/{} doesn't match.(Pretrained: {}, Actual: {})"
.format(weights_dir, var.name, pretrained_shape, actual_shape))
vars_not_load.append(var)
continue
vars_to_load.append(var)
params_dict = fluid.io.load_program_state(
weights_dir, var_list=vars_to_load)
fluid.io.set_program_state(main_prog, params_dict)
if len(vars_to_load) == 0:
print(
"There is no pretrain weights loaded, maybe you should check you pretrain model!"
)
else:
print("There are {}/{} varaibles in {} are loaded.".format(
len(vars_to_load),
len(vars_to_load) + len(vars_not_load), weights_dir))
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
......
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -115,6 +115,11 @@ def visualize(cfg,
ckpt_dir = cfg.TEST.TEST_MODEL if not ckpt_dir else ckpt_dir
if ckpt_dir is not None:
print('load test model:', ckpt_dir)
try:
fluid.load(test_prog, os.path.join(ckpt_dir, 'model'), exe)
except:
fluid.io.load_params(exe, ckpt_dir, main_program=test_prog)
save_dir = vis_dir
......@@ -169,18 +174,13 @@ def visualize(cfg,
print("VisualDL visualization epoch", epoch)
pred_mask_np = np.array(pred_mask.convert("RGB"))
log_writer.add_image(
"Predict/{}".format(img_name),
pred_mask_np,
epoch)
log_writer.add_image("Predict/{}".format(img_name),
pred_mask_np, epoch)
# Original image
# BGR->RGB
img = cv2.imread(
os.path.join(cfg.DATASET.DATA_DIR, img_name))[..., ::-1]
log_writer.add_image(
"Images/{}".format(img_name),
img,
epoch)
img = cv2.imread(os.path.join(cfg.DATASET.DATA_DIR,
img_name))[..., ::-1]
log_writer.add_image("Images/{}".format(img_name), img, epoch)
# add ground truth (label) images
grt = grts[i]
if grt is not None:
......@@ -189,9 +189,7 @@ def visualize(cfg,
grt_pil.putpalette(color_map)
grt_pil = grt_pil.resize((org_shape[1], org_shape[0]))
grt = np.array(grt_pil.convert("RGB"))
log_writer.add_image(
"Label/{}".format(img_name),
grt,
log_writer.add_image("Label/{}".format(img_name), grt,
epoch)
# If in local_test mode, only visualize 5 images just for testing
......
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
......@@ -42,7 +43,7 @@ model_urls = {
"hrnet_w30_bn_imagenet":
"https://paddleseg.bj.bcebos.com/models/hrnet_w30_imagenet.tar",
"hrnet_w32_bn_imagenet":
"https://paddleseg.bj.bcebos.com/models/hrnet_w32_imagenet.tar" ,
"https://paddleseg.bj.bcebos.com/models/hrnet_w32_imagenet.tar",
"hrnet_w40_bn_imagenet":
"https://paddleseg.bj.bcebos.com/models/hrnet_w40_imagenet.tar",
"hrnet_w44_bn_imagenet":
......
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -44,6 +44,7 @@ from model_builder import parse_shape_from_file
from eval import evaluate
from vis import visualize
from utils import dist_utils
from utils.load_model_utils import load_pretrained_weights
import solver
from paddleslim.dist.single_distiller import merge, l2_loss
......@@ -116,38 +117,7 @@ def parse_args():
return parser.parse_args()
def save_vars(executor, dirname, program=None, vars=None):
"""
Temporary resolution for Win save variables compatability.
Will fix in PaddlePaddle v1.5.2
"""
save_program = fluid.Program()
save_block = save_program.global_block()
for each_var in vars:
# NOTE: don't save the variable which type is RAW
if each_var.type == fluid.core.VarDesc.VarType.RAW:
continue
new_var = save_block.create_var(
name=each_var.name,
shape=each_var.shape,
dtype=each_var.dtype,
type=each_var.type,
lod_level=each_var.lod_level,
persistable=True)
file_path = os.path.join(dirname, new_var.name)
file_path = os.path.normpath(file_path)
save_block.append_op(
type='save',
inputs={'X': [new_var]},
outputs={},
attrs={'file_path': file_path})
executor.run(save_program)
def save_checkpoint(exe, program, ckpt_name):
def save_checkpoint(program, ckpt_name):
"""
Save checkpoint for evaluation or resume training
"""
......@@ -156,29 +126,22 @@ def save_checkpoint(exe, program, ckpt_name):
if not os.path.isdir(ckpt_dir):
os.makedirs(ckpt_dir)
save_vars(
exe,
ckpt_dir,
program,
vars=list(filter(fluid.io.is_persistable, program.list_vars())))
fluid.save(program, os.path.join(ckpt_dir, 'model'))
return ckpt_dir
def load_checkpoint(exe, program):
"""
Load checkpoiont from pretrained model directory for resume training
Load checkpoiont for resuming training
"""
print('Resume model training from:', cfg.TRAIN.RESUME_MODEL_DIR)
if not os.path.exists(cfg.TRAIN.RESUME_MODEL_DIR):
raise ValueError("TRAIN.PRETRAIN_MODEL {} not exist!".format(
cfg.TRAIN.RESUME_MODEL_DIR))
fluid.io.load_persistables(
exe, cfg.TRAIN.RESUME_MODEL_DIR, main_program=program)
model_path = cfg.TRAIN.RESUME_MODEL_DIR
print('Resume model training from:', model_path)
if not os.path.exists(model_path):
raise ValueError(
"TRAIN.PRETRAIN_MODEL {} not exist!".format(model_path))
fluid.load(program, os.path.join(model_path, 'model'), exe)
# Check is path ended by path spearator
if model_path[-1] == os.sep:
model_path = model_path[0:-1]
......@@ -193,7 +156,6 @@ def load_checkpoint(exe, program):
else:
raise ValueError("Resume model path is not valid!")
print("Model checkpoint loaded successfully!")
return begin_epoch
......@@ -289,6 +251,10 @@ def train(cfg):
ckpt_dir = cfg.SLIM.KNOWLEDGE_DISTILL_TEACHER_MODEL_DIR
assert ckpt_dir is not None
print('load teacher model:', ckpt_dir)
if os.path.exists(ckpt_dir):
try:
fluid.load(teacher_program, os.path.join(ckpt_dir, 'model'), exe)
except:
fluid.io.load_params(exe, ckpt_dir, main_program=teacher_program)
# cfg = load_config(FLAGS.config)
......@@ -355,42 +321,8 @@ def train(cfg):
begin_epoch = load_checkpoint(exe, fluid.default_main_program())
# Load pretrained model
elif os.path.exists(cfg.TRAIN.PRETRAINED_MODEL_DIR):
print_info('Pretrained model dir: ', cfg.TRAIN.PRETRAINED_MODEL_DIR)
load_vars = []
load_fail_vars = []
def var_shape_matched(var, shape):
"""
Check whehter persitable variable shape is match with current network
"""
var_exist = os.path.exists(
os.path.join(cfg.TRAIN.PRETRAINED_MODEL_DIR, var.name))
if var_exist:
var_shape = parse_shape_from_file(
os.path.join(cfg.TRAIN.PRETRAINED_MODEL_DIR, var.name))
return var_shape == shape
return False
for x in fluid.default_main_program().list_vars():
if isinstance(x, fluid.framework.Parameter):
shape = tuple(fluid.global_scope().find_var(
x.name).get_tensor().shape())
if var_shape_matched(x, shape):
load_vars.append(x)
else:
load_fail_vars.append(x)
fluid.io.load_vars(
exe, dirname=cfg.TRAIN.PRETRAINED_MODEL_DIR, vars=load_vars)
for var in load_vars:
print_info("Parameter[{}] loaded sucessfully!".format(var.name))
for var in load_fail_vars:
print_info(
"Parameter[{}] don't exist or shape does not match current network, skip"
" to load it.".format(var.name))
print_info("{}/{} pretrained parameters loaded successfully!".format(
len(load_vars),
len(load_vars) + len(load_fail_vars)))
load_pretrained_weights(exe, fluid.default_main_program(),
cfg.TRAIN.PRETRAINED_MODEL_DIR)
else:
print_info(
'Pretrained model dir {} not exists, training from scratch...'.
......@@ -475,12 +407,9 @@ def train(cfg):
step)
log_writer.add_scalar('Train/mean_acc', mean_acc,
step)
log_writer.add_scalar('Train/loss', avg_loss,
step)
log_writer.add_scalar('Train/lr', lr[0],
step)
log_writer.add_scalar('Train/step/sec', speed,
step)
log_writer.add_scalar('Train/loss', avg_loss, step)
log_writer.add_scalar('Train/lr', lr[0], step)
log_writer.add_scalar('Train/step/sec', speed, step)
sys.stdout.flush()
avg_loss = 0.0
cm.zero_matrix()
......@@ -503,16 +432,13 @@ def train(cfg):
speed = args.log_steps / timer.elapsed_time()
print((
"epoch={} step={} lr={:.5f} loss={:.4f} teacher loss={:.4f} distill loss={:.4f} step/sec={:.3f} | ETA {}"
).format(epoch, step, lr[0], avg_loss,
avg_t_loss, avg_d_loss, speed,
).format(epoch, step, lr[0], avg_loss, avg_t_loss,
avg_d_loss, speed,
calculate_eta(all_step - step, speed)))
if args.use_vdl:
log_writer.add_scalar('Train/loss', avg_loss,
step)
log_writer.add_scalar('Train/lr', lr[0],
step)
log_writer.add_scalar('Train/speed', speed,
step)
log_writer.add_scalar('Train/loss', avg_loss, step)
log_writer.add_scalar('Train/lr', lr[0], step)
log_writer.add_scalar('Train/speed', speed, step)
sys.stdout.flush()
avg_loss = 0.0
avg_t_loss = 0.0
......@@ -527,7 +453,7 @@ def train(cfg):
if (epoch % cfg.TRAIN.SNAPSHOT_EPOCH == 0
or epoch == cfg.SOLVER.NUM_EPOCHS) and cfg.TRAINER_ID == 0:
ckpt_dir = save_checkpoint(exe, fluid.default_main_program(), epoch)
ckpt_dir = save_checkpoint(fluid.default_main_program(), epoch)
if args.do_eval:
print("Evaluation start")
......@@ -537,10 +463,8 @@ def train(cfg):
use_gpu=args.use_gpu,
use_mpio=args.use_mpio)
if args.use_vdl:
log_writer.add_scalar('Evaluate/mean_iou', mean_iou,
step)
log_writer.add_scalar('Evaluate/mean_acc', mean_acc,
step)
log_writer.add_scalar('Evaluate/mean_iou', mean_iou, step)
log_writer.add_scalar('Evaluate/mean_acc', mean_acc, step)
if mean_iou > best_mIoU:
best_mIoU = mean_iou
......@@ -560,11 +484,11 @@ def train(cfg):
ckpt_dir=ckpt_dir,
log_writer=log_writer)
if cfg.TRAINER_ID == 0:
ckpt_dir = save_checkpoint(exe, fluid.default_main_program(), epoch)
ckpt_dir = save_checkpoint(fluid.default_main_program(), epoch)
# save final model
if cfg.TRAINER_ID == 0:
save_checkpoint(exe, fluid.default_main_program(), 'final')
save_checkpoint(fluid.default_main_program(), 'final')
def main(args):
......
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -27,6 +27,7 @@ from models.libs.model_libs import separate_conv
from models.backbone.mobilenet_v2 import MobileNetV2 as mobilenet_backbone
from models.backbone.xception import Xception as xception_backbone
def encoder(input):
# 编码器配置,采用ASPP架构,pooling + 1x1_conv + 三个不同尺度的空洞卷积并行, concat后1x1conv
# ASPP_WITH_SEP_CONV:默认为真,使用depthwise可分离卷积,否则使用普通卷积
......@@ -47,8 +48,7 @@ def encoder(input):
with scope('encoder'):
channel = 256
with scope("image_pool"):
image_avg = fluid.layers.reduce_mean(
input, [2, 3], keep_dim=True)
image_avg = fluid.layers.reduce_mean(input, [2, 3], keep_dim=True)
image_avg = bn_relu(
conv(
image_avg,
......@@ -191,7 +191,10 @@ def nas_backbone(input, arch):
end_points = 8
decode_point = 3
data, decode_shortcuts = arch(
input, end_points=end_points, return_block=decode_point, output_stride=16)
input,
end_points=end_points,
return_block=decode_point,
output_stride=16)
decode_shortcut = decode_shortcuts[decode_point]
return data, decode_shortcut
......
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -123,6 +123,9 @@ def evaluate(cfg, ckpt_dir=None, use_gpu=False, use_mpio=False, **kwargs):
if ckpt_dir is not None:
print('load test model:', ckpt_dir)
try:
fluid.load(test_prog, os.path.join(ckpt_dir, 'model'), exe)
except:
fluid.io.load_params(exe, ckpt_dir, main_program=test_prog)
# Use streaming confusion matrix to calculate mean_iou
......
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
......@@ -95,8 +96,8 @@ class MobileNetV2SpaceSeg(SearchSpaceBase):
tokens = self.init_tokens()
self.bottleneck_params_list = []
self.bottleneck_params_list.append(
(1, self.head_num[tokens[0]], 1, 1, 3))
self.bottleneck_params_list.append((1, self.head_num[tokens[0]], 1, 1,
3))
self.bottleneck_params_list.append(
(self.multiply[tokens[1]], self.filter_num1[tokens[2]],
self.repeat[tokens[3]], 2, self.k_size[tokens[4]]))
......
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -47,6 +47,7 @@ from model_builder import parse_shape_from_file
from eval_nas import evaluate
from vis import visualize
from utils import dist_utils
from utils.load_model_utils import load_pretrained_weights
from mobilenetv2_search_space import MobileNetV2SpaceSeg
from paddleslim.nas.search_space.search_space_factory import SearchSpaceFactory
......@@ -116,38 +117,7 @@ def parse_args():
return parser.parse_args()
def save_vars(executor, dirname, program=None, vars=None):
"""
Temporary resolution for Win save variables compatability.
Will fix in PaddlePaddle v1.5.2
"""
save_program = fluid.Program()
save_block = save_program.global_block()
for each_var in vars:
# NOTE: don't save the variable which type is RAW
if each_var.type == fluid.core.VarDesc.VarType.RAW:
continue
new_var = save_block.create_var(
name=each_var.name,
shape=each_var.shape,
dtype=each_var.dtype,
type=each_var.type,
lod_level=each_var.lod_level,
persistable=True)
file_path = os.path.join(dirname, new_var.name)
file_path = os.path.normpath(file_path)
save_block.append_op(
type='save',
inputs={'X': [new_var]},
outputs={},
attrs={'file_path': file_path})
executor.run(save_program)
def save_checkpoint(exe, program, ckpt_name):
def save_checkpoint(program, ckpt_name):
"""
Save checkpoint for evaluation or resume training
"""
......@@ -156,29 +126,22 @@ def save_checkpoint(exe, program, ckpt_name):
if not os.path.isdir(ckpt_dir):
os.makedirs(ckpt_dir)
save_vars(
exe,
ckpt_dir,
program,
vars=list(filter(fluid.io.is_persistable, program.list_vars())))
fluid.save(program, os.path.join(ckpt_dir, 'model'))
return ckpt_dir
def load_checkpoint(exe, program):
"""
Load checkpoiont from pretrained model directory for resume training
Load checkpoiont for resuming training
"""
print('Resume model training from:', cfg.TRAIN.RESUME_MODEL_DIR)
if not os.path.exists(cfg.TRAIN.RESUME_MODEL_DIR):
raise ValueError("TRAIN.PRETRAIN_MODEL {} not exist!".format(
cfg.TRAIN.RESUME_MODEL_DIR))
fluid.io.load_persistables(
exe, cfg.TRAIN.RESUME_MODEL_DIR, main_program=program)
model_path = cfg.TRAIN.RESUME_MODEL_DIR
print('Resume model training from:', model_path)
if not os.path.exists(model_path):
raise ValueError(
"TRAIN.PRETRAIN_MODEL {} not exist!".format(model_path))
fluid.load(program, os.path.join(model_path, 'model'), exe)
# Check is path ended by path spearator
if model_path[-1] == os.sep:
model_path = model_path[0:-1]
......@@ -193,7 +156,6 @@ def load_checkpoint(exe, program):
else:
raise ValueError("Resume model path is not valid!")
print("Model checkpoint loaded successfully!")
return begin_epoch
......@@ -245,8 +207,6 @@ def train(cfg):
yield item[0], item[1], item[2]
# Get device environment
# places = fluid.cuda_places() if args.use_gpu else fluid.cpu_places()
# place = places[0]
gpu_id = int(os.environ.get('FLAGS_selected_gpus', 0))
place = fluid.CUDAPlace(gpu_id) if args.use_gpu else fluid.CPUPlace()
places = fluid.cuda_places() if args.use_gpu else fluid.cpu_places()
......@@ -326,43 +286,8 @@ def train(cfg):
begin_epoch = load_checkpoint(exe, train_prog)
# Load pretrained model
elif os.path.exists(cfg.TRAIN.PRETRAINED_MODEL_DIR):
print_info('Pretrained model dir: ', cfg.TRAIN.PRETRAINED_MODEL_DIR)
load_vars = []
load_fail_vars = []
def var_shape_matched(var, shape):
"""
Check whehter persitable variable shape is match with current network
"""
var_exist = os.path.exists(
os.path.join(cfg.TRAIN.PRETRAINED_MODEL_DIR, var.name))
if var_exist:
var_shape = parse_shape_from_file(
os.path.join(cfg.TRAIN.PRETRAINED_MODEL_DIR, var.name))
return var_shape == shape
return False
for x in train_prog.list_vars():
if isinstance(x, fluid.framework.Parameter):
shape = tuple(fluid.global_scope().find_var(
x.name).get_tensor().shape())
if var_shape_matched(x, shape):
load_vars.append(x)
else:
load_fail_vars.append(x)
fluid.io.load_vars(
exe, dirname=cfg.TRAIN.PRETRAINED_MODEL_DIR, vars=load_vars)
for var in load_vars:
print_info("Parameter[{}] loaded sucessfully!".format(var.name))
for var in load_fail_vars:
print_info(
"Parameter[{}] don't exist or shape does not match current network, skip"
" to load it.".format(var.name))
print_info(
"{}/{} pretrained parameters loaded successfully!".format(
len(load_vars),
len(load_vars) + len(load_fail_vars)))
load_pretrained_weights(exe, train_prog,
cfg.TRAIN.PRETRAINED_MODEL_DIR)
else:
print_info(
'Pretrained model dir {} not exists, training from scratch...'.
......@@ -419,8 +344,7 @@ def train(cfg):
except Exception as e:
print(e)
if epoch > cfg.SLIM.NAS_START_EVAL_EPOCH:
ckpt_dir = save_checkpoint(exe, train_prog,
'{}_tmp'.format(port))
ckpt_dir = save_checkpoint(train_prog, '{}_tmp'.format(port))
_, mean_iou, _, mean_acc = evaluate(
cfg=cfg,
arch=arch,
......
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -46,6 +46,7 @@ from models.model_builder import parse_shape_from_file
from eval_prune import evaluate
from vis import visualize
from utils import dist_utils
from utils.load_model_utils import load_pretrained_weights
from paddleslim.prune import Pruner, save_model
from paddleslim.analysis import flops
......@@ -285,42 +286,7 @@ def train(cfg):
begin_epoch = load_checkpoint(exe, train_prog)
# Load pretrained model
elif os.path.exists(cfg.TRAIN.PRETRAINED_MODEL_DIR):
print_info('Pretrained model dir: ', cfg.TRAIN.PRETRAINED_MODEL_DIR)
load_vars = []
load_fail_vars = []
def var_shape_matched(var, shape):
"""
Check whehter persitable variable shape is match with current network
"""
var_exist = os.path.exists(
os.path.join(cfg.TRAIN.PRETRAINED_MODEL_DIR, var.name))
if var_exist:
var_shape = parse_shape_from_file(
os.path.join(cfg.TRAIN.PRETRAINED_MODEL_DIR, var.name))
return var_shape == shape
return False
for x in train_prog.list_vars():
if isinstance(x, fluid.framework.Parameter):
shape = tuple(fluid.global_scope().find_var(
x.name).get_tensor().shape())
if var_shape_matched(x, shape):
load_vars.append(x)
else:
load_fail_vars.append(x)
fluid.io.load_vars(
exe, dirname=cfg.TRAIN.PRETRAINED_MODEL_DIR, vars=load_vars)
for var in load_vars:
print_info("Parameter[{}] loaded sucessfully!".format(var.name))
for var in load_fail_vars:
print_info(
"Parameter[{}] don't exist or shape does not match current network, skip"
" to load it.".format(var.name))
print_info("{}/{} pretrained parameters loaded successfully!".format(
len(load_vars),
len(load_vars) + len(load_fail_vars)))
load_pretrained_weights(exe, train_prog, cfg.TRAIN.PRETRAINED_MODEL_DIR)
else:
print_info(
'Pretrained model dir {} not exists, training from scratch...'.
......@@ -409,12 +375,9 @@ def train(cfg):
step)
log_writer.add_scalar('Train/mean_acc', mean_acc,
step)
log_writer.add_scalar('Train/loss', avg_loss,
step)
log_writer.add_scalar('Train/lr', lr[0],
step)
log_writer.add_scalar('Train/step/sec', speed,
step)
log_writer.add_scalar('Train/loss', avg_loss, step)
log_writer.add_scalar('Train/lr', lr[0], step)
log_writer.add_scalar('Train/step/sec', speed, step)
sys.stdout.flush()
avg_loss = 0.0
cm.zero_matrix()
......@@ -436,12 +399,9 @@ def train(cfg):
).format(epoch, step, lr[0], avg_loss, speed,
calculate_eta(all_step - step, speed)))
if args.use_vdl:
log_writer.add_scalar('Train/loss', avg_loss,
step)
log_writer.add_scalar('Train/lr', lr[0],
step)
log_writer.add_scalar('Train/speed', speed,
step)
log_writer.add_scalar('Train/loss', avg_loss, step)
log_writer.add_scalar('Train/lr', lr[0], step)
log_writer.add_scalar('Train/speed', speed, step)
sys.stdout.flush()
avg_loss = 0.0
timer.restart()
......@@ -464,10 +424,8 @@ def train(cfg):
use_gpu=args.use_gpu,
use_mpio=args.use_mpio)
if args.use_vdl:
log_writer.add_scalar('Evaluate/mean_iou', mean_iou,
step)
log_writer.add_scalar('Evaluate/mean_acc', mean_acc,
step)
log_writer.add_scalar('Evaluate/mean_iou', mean_iou, step)
log_writer.add_scalar('Evaluate/mean_acc', mean_acc, step)
# Use VisualDL to visualize results
if args.use_vdl and cfg.DATASET.VIS_FILE_LIST is not None:
......
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -40,7 +40,8 @@ from models.model_builder import parse_shape_from_file
from eval_quant import evaluate
from vis import visualize
from utils import dist_utils
from train import save_vars, save_checkpoint, load_checkpoint, update_best_model, print_info
from utils.load_model_utils import load_pretrained_weights
from train import update_best_model, print_info
from paddleslim.quant import quant_aware
......@@ -103,6 +104,55 @@ def parse_args():
return parser.parse_args()
def save_checkpoint(exe, program, ckpt_name):
"""
Save checkpoint for evaluation or resume training
"""
ckpt_dir = os.path.join(cfg.TRAIN.MODEL_SAVE_DIR, str(ckpt_name))
print("Save model checkpoint to {}".format(ckpt_dir))
if not os.path.isdir(ckpt_dir):
os.makedirs(ckpt_dir)
fluid.io.save_vars(
exe,
ckpt_dir,
program,
vars=list(filter(fluid.io.is_persistable, program.list_vars())))
return ckpt_dir
def load_checkpoint(exe, program):
"""
Load checkpoiont from pretrained model directory for resume training
"""
print('Resume model training from:', cfg.TRAIN.RESUME_MODEL_DIR)
if not os.path.exists(cfg.TRAIN.RESUME_MODEL_DIR):
raise ValueError("TRAIN.PRETRAIN_MODEL {} not exist!".format(
cfg.TRAIN.RESUME_MODEL_DIR))
fluid.io.load_persistables(
exe, cfg.TRAIN.RESUME_MODEL_DIR, main_program=program)
model_path = cfg.TRAIN.RESUME_MODEL_DIR
# Check is path ended by path spearator
if model_path[-1] == os.sep:
model_path = model_path[0:-1]
epoch_name = os.path.basename(model_path)
# If resume model is final model
if epoch_name == 'final':
begin_epoch = cfg.SOLVER.NUM_EPOCHS
# If resume model path is end of digit, restore epoch status
elif epoch_name.isdigit():
epoch = int(epoch_name)
begin_epoch = epoch + 1
else:
raise ValueError("Resume model path is not valid!")
print("Model checkpoint loaded successfully!")
return begin_epoch
def train_quant(cfg):
startup_prog = fluid.Program()
train_prog = fluid.Program()
......@@ -182,42 +232,7 @@ def train_quant(cfg):
begin_epoch = load_checkpoint(exe, train_prog)
# Load pretrained model
elif os.path.exists(cfg.TRAIN.PRETRAINED_MODEL_DIR):
print_info('Pretrained model dir: ', cfg.TRAIN.PRETRAINED_MODEL_DIR)
load_vars = []
load_fail_vars = []
def var_shape_matched(var, shape):
"""
Check whehter persitable variable shape is match with current network
"""
var_exist = os.path.exists(
os.path.join(cfg.TRAIN.PRETRAINED_MODEL_DIR, var.name))
if var_exist:
var_shape = parse_shape_from_file(
os.path.join(cfg.TRAIN.PRETRAINED_MODEL_DIR, var.name))
return var_shape == shape
return False
for x in train_prog.list_vars():
if isinstance(x, fluid.framework.Parameter):
shape = tuple(fluid.global_scope().find_var(
x.name).get_tensor().shape())
if var_shape_matched(x, shape):
load_vars.append(x)
else:
load_fail_vars.append(x)
fluid.io.load_vars(
exe, dirname=cfg.TRAIN.PRETRAINED_MODEL_DIR, vars=load_vars)
for var in load_vars:
print_info("Parameter[{}] loaded sucessfully!".format(var.name))
for var in load_fail_vars:
print_info(
"Parameter[{}] don't exist or shape does not match current network, skip"
" to load it.".format(var.name))
print_info("{}/{} pretrained parameters loaded successfully!".format(
len(load_vars),
len(load_vars) + len(load_fail_vars)))
load_pretrained_weights(exe, train_prog, cfg.TRAIN.PRETRAINED_MODEL_DIR)
else:
print_info(
'Pretrained model dir {} not exists, training from scratch...'.
......
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
......
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
......
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册