提交 bf72574f 编写于 作者: W wuyefeilin 提交者: wuzewu

导出流程适应不同的aug_method (#118)

* update solver.py and model_builder.py
上级 ed41782e
......@@ -124,6 +124,56 @@ def sigmoid_to_softmax(logit):
logit = fluid.layers.transpose(logit, [0, 3, 1, 2])
return logit
def export_preprocess(image):
"""导出模型的预处理流程"""
image = fluid.layers.transpose(image, [0, 3, 1, 2])
origin_shape = fluid.layers.shape(image)[-2:]
# 不同AUG_METHOD方法的resize
if cfg.AUG.AUG_METHOD == 'unpadding':
h_fix = cfg.AUG.FIX_RESIZE_SIZE[1]
w_fix = cfg.AUG.FIX_RESIZE_SIZE[0]
image = fluid.layers.resize_bilinear(
image,
out_shape=[h_fix, w_fix],
align_corners=False,
align_mode=0)
elif cfg.AUG.AUG_METHOD == 'rangescaling':
size = cfg.AUG.INF_RESIZE_VALUE
value = fluid.layers.reduce_max(origin_shape)
scale = float(size) / value.astype('float32')
image = fluid.layers.resize_bilinear(
image, scale=scale, align_corners=False, align_mode=0)
# 存储resize后图像shape
valid_shape = fluid.layers.shape(image)[-2:]
# padding到eval_crop_size大小
width = cfg.EVAL_CROP_SIZE[0]
height = cfg.EVAL_CROP_SIZE[1]
pad_target = fluid.layers.assign(
np.array([height, width]).astype('float32'))
up = fluid.layers.assign(np.array([0]).astype('float32'))
down = pad_target[0] - valid_shape[0]
left = up
right = pad_target[1] - valid_shape[1]
paddings = fluid.layers.concat([up, down, left, right])
paddings = fluid.layers.cast(paddings, 'int32')
image = fluid.layers.pad2d(
image, paddings=paddings, pad_value=127.5)
# normalize
mean = np.array(cfg.MEAN).reshape(1, len(cfg.MEAN), 1, 1)
mean = fluid.layers.assign(mean.astype('float32'))
std = np.array(cfg.STD).reshape(1, len(cfg.STD), 1, 1)
std = fluid.layers.assign(std.astype('float32'))
image = (image / 255 - mean) / std
# 使后面的网络能通过类似image.shape获取特征图的shape
image = fluid.layers.reshape(
image, shape=[-1, cfg.DATASET.DATA_DIM, height, width])
return image, valid_shape, origin_shape
def build_model(main_prog, start_prog, phase=ModelPhase.TRAIN):
if not ModelPhase.is_valid_phase(phase):
......@@ -149,18 +199,8 @@ def build_model(main_prog, start_prog, phase=ModelPhase.TRAIN):
shape=[-1, -1, -1, cfg.DATASET.DATA_DIM],
dtype='float32',
append_batch_size=False)
image = fluid.layers.transpose(origin_image, [0, 3, 1, 2])
origin_shape = fluid.layers.shape(image)[-2:]
mean = np.array(cfg.MEAN).reshape(1, len(cfg.MEAN), 1, 1)
mean = fluid.layers.assign(mean.astype('float32'))
std = np.array(cfg.STD).reshape(1, len(cfg.STD), 1, 1)
std = fluid.layers.assign(std.astype('float32'))
image = fluid.layers.resize_bilinear(
image,
out_shape=[height, width],
align_corners=False,
align_mode=0)
image = (image / 255 - mean) / std
image, valid_shape, origin_shape = export_preprocess(origin_image)
else:
image = fluid.layers.data(
name='image', shape=image_shape, dtype='float32')
......@@ -198,7 +238,6 @@ def build_model(main_prog, start_prog, phase=ModelPhase.TRAIN):
raise Exception(
"softmax loss can not combine with dice loss or bce loss"
)
logits = model_func(image, class_num)
# 根据选择的loss函数计算相应的损失函数
......@@ -252,13 +291,17 @@ def build_model(main_prog, start_prog, phase=ModelPhase.TRAIN):
logit = sigmoid_to_softmax(logit)
else:
logit = softmax(logit)
# 获取有效部分
logit = fluid.layers.slice(
logit, axes=[2, 3], starts=[0, 0], ends=valid_shape)
logit = fluid.layers.resize_bilinear(
logit,
out_shape=origin_shape,
align_corners=False,
align_mode=0)
logit = fluid.layers.transpose(logit, [0, 2, 3, 1])
logit = fluid.layers.argmax(logit, axis=3)
logit = fluid.layers.argmax(logit, axis=1)
return origin_image, logit
if class_num == 1:
......
......@@ -122,6 +122,12 @@ class SegConfig(dict):
len(self.MODEL.MULTI_LOSS_WEIGHT) != 3:
self.MODEL.MULTI_LOSS_WEIGHT = [1.0, 0.4, 0.16]
if self.AUG.AUG_METHOD not in ['unpadding', 'stepscaling', 'rangescaling']:
raise ValueError(
'AUG.AUG_METHOD config error, only support `unpadding`, `unpadding` and `rangescaling`'
)
def update_from_list(self, config_list):
if len(config_list) % 2 != 0:
raise ValueError(
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册