From b3a9476da3e2b35928ee77babf6c633e29b337e8 Mon Sep 17 00:00:00 2001 From: wuzewu Date: Mon, 17 Aug 2020 11:44:52 +0800 Subject: [PATCH] update ocrnet doc --- ...scapes.yaml => ocrnet_w18_cityscapes.yaml} | 8 +- docs/model_zoo.md | 2 +- pdseg/models/model_builder.py | 6 +- pdseg/models/modeling/ocnet.py | 309 ----------- pdseg/models/modeling/ocrnet.py | 493 ++++++++++++++++++ pretrained_model/download_model.py | 4 +- 6 files changed, 503 insertions(+), 319 deletions(-) rename configs/{ocnet_w18_cityscapes.yaml => ocrnet_w18_cityscapes.yaml} (88%) delete mode 100644 pdseg/models/modeling/ocnet.py create mode 100644 pdseg/models/modeling/ocrnet.py diff --git a/configs/ocnet_w18_cityscapes.yaml b/configs/ocrnet_w18_cityscapes.yaml similarity index 88% rename from configs/ocnet_w18_cityscapes.yaml rename to configs/ocrnet_w18_cityscapes.yaml index 43744ac4..15fb92ad 100644 --- a/configs/ocnet_w18_cityscapes.yaml +++ b/configs/ocrnet_w18_cityscapes.yaml @@ -27,7 +27,7 @@ FREEZE: MODEL_FILENAME: "model" PARAMS_FILENAME: "params" MODEL: - MODEL_NAME: "ocnet" + MODEL_NAME: "ocrnet" DEFAULT_NORM_TYPE: "bn" HRNET: STAGE2: @@ -41,12 +41,12 @@ MODEL: OCR_KEY_CHANNELS: 256 MULTI_LOSS_WEIGHT: [1.0, 1.0] TRAIN: - PRETRAINED_MODEL_DIR: u"./pretrained_model/ocnet_w18_cityscape/best_model" - MODEL_SAVE_DIR: "output/ocnet_w18_bn_cityscapes" + PRETRAINED_MODEL_DIR: u"./pretrained_model/ocrnet_w18_cityscape/best_model" + MODEL_SAVE_DIR: "output/ocrnet_w18_bn_cityscapes" SNAPSHOT_EPOCH: 1 SYNC_BATCH_NORM: True TEST: - TEST_MODEL: "output/ocnet_w18_bn_cityscapes/first" + TEST_MODEL: "output/ocrnet_w18_bn_cityscapes/first" SOLVER: LR: 0.01 LR_POLICY: "poly" diff --git a/docs/model_zoo.md b/docs/model_zoo.md index 2e990edb..e9eda4ea 100644 --- a/docs/model_zoo.md +++ b/docs/model_zoo.md @@ -68,6 +68,6 @@ train数据集合为Cityscapes训练集合,测试为Cityscapes的验证集合 | PSPNet/bn | Cityscapes |[pspnet101_cityscapes.tgz](https://paddleseg.bj.bcebos.com/models/pspnet101_cityscapes.tgz) |16|false| 0.7734 | | HRNet_W18/bn | Cityscapes |[hrnet_w18_bn_cityscapes.tgz](https://paddleseg.bj.bcebos.com/models/hrnet_w18_bn_cityscapes.tgz) | 4 | false | 0.7936 | | Fast-SCNN/bn | Cityscapes |[fast_scnn_cityscapes.tar](https://paddleseg.bj.bcebos.com/models/fast_scnn_cityscape.tar) | 32 | false | 0.6964 | -| OCNet/bn | Cityscapes |[ocnet_w18_bn_cityscapes.tar.gz](https://paddleseg.bj.bcebos.com/models/ocnet_w18_bn_cityscapes.tar.gz) | 4 | false | 0.8023 | +| OCRNet/bn | Cityscapes |[ocrnet_w18_bn_cityscapes.tar.gz](https://paddleseg.bj.bcebos.com/models/ocrnet_w18_bn_cityscapes.tar.gz) | 4 | false | 0.8023 | 测试环境为python 3.7.3,v100,cudnn 7.6.2。 diff --git a/pdseg/models/model_builder.py b/pdseg/models/model_builder.py index f15c82e6..a15e3515 100644 --- a/pdseg/models/model_builder.py +++ b/pdseg/models/model_builder.py @@ -26,7 +26,7 @@ from loss import multi_dice_loss from loss import multi_bce_loss from lovasz_losses import lovasz_hinge from lovasz_losses import lovasz_softmax -from models.modeling import deeplab, unet, icnet, pspnet, hrnet, fast_scnn,ocnet +from models.modeling import deeplab, unet, icnet, pspnet, hrnet, fast_scnn, ocrnet class ModelPhase(object): @@ -85,8 +85,8 @@ def seg_model(image, class_num): logits = hrnet.hrnet(image, class_num) elif model_name == 'fast_scnn': logits = fast_scnn.fast_scnn(image, class_num) - elif model_name == 'ocnet': - logits = ocnet.ocnet(image, class_num) + elif model_name == 'ocrnet': + logits = ocrnet.ocrnet(image, class_num) else: raise Exception( "unknow model name, only support unet, deeplabv3p, icnet, pspnet, hrnet, fast_scnn" diff --git a/pdseg/models/modeling/ocnet.py b/pdseg/models/modeling/ocnet.py deleted file mode 100644 index 01b2e301..00000000 --- a/pdseg/models/modeling/ocnet.py +++ /dev/null @@ -1,309 +0,0 @@ -# coding: utf8 -# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import paddle -import paddle.fluid as fluid -from paddle.fluid.initializer import MSRA -from paddle.fluid.param_attr import ParamAttr - -from utils.config import cfg - - -def conv_bn_layer(input, filter_size, num_filters, stride=1, padding=1, num_groups=1, if_act=True, name=None): - conv = fluid.layers.conv2d( - input=input, - num_filters=num_filters, - filter_size=filter_size, - stride=stride, - padding=(filter_size - 1) // 2, - groups=num_groups, - act=None, -# param_attr=ParamAttr(initializer=MSRA(), learning_rate=1.0, name=name + '_weights'), - param_attr=ParamAttr(initializer=fluid.initializer.Normal(scale=0.001), learning_rate=1.0, name=name + '_weights'), - bias_attr=False) - bn_name = name + '_bn' - bn = fluid.layers.batch_norm(input=conv, - param_attr=ParamAttr(name=bn_name + "_scale", - initializer=fluid.initializer.Constant(1.0)), - bias_attr=ParamAttr(name=bn_name + "_offset", - initializer=fluid.initializer.Constant(0.0)), - moving_mean_name=bn_name + '_mean', - moving_variance_name=bn_name + '_variance') - if if_act: - bn = fluid.layers.relu(bn) - return bn - -def basic_block(input, num_filters, stride=1, downsample=False, name=None): - residual = input - conv = conv_bn_layer(input=input, filter_size=3, num_filters=num_filters, stride=stride, name=name + '_conv1') - conv = conv_bn_layer(input=conv, filter_size=3, num_filters=num_filters, if_act=False, name=name + '_conv2') - if downsample: - residual = conv_bn_layer(input=input, filter_size=1, num_filters=num_filters, if_act=False, - name=name + '_downsample') - return fluid.layers.elementwise_add(x=residual, y=conv, act='relu') - -def bottleneck_block(input, num_filters, stride=1, downsample=False, name=None): - residual = input - conv = conv_bn_layer(input=input, filter_size=1, num_filters=num_filters, name=name + '_conv1') - conv = conv_bn_layer(input=conv, filter_size=3, num_filters=num_filters, stride=stride, name=name + '_conv2') - conv = conv_bn_layer(input=conv, filter_size=1, num_filters=num_filters * 4, if_act=False, - name=name + '_conv3') - if downsample: - residual = conv_bn_layer(input=input, filter_size=1, num_filters=num_filters * 4, if_act=False, - name=name + '_downsample') - return fluid.layers.elementwise_add(x=residual, y=conv, act='relu') - -def fuse_layers(x, channels, multi_scale_output=True, name=None): - out = [] - for i in range(len(channels) if multi_scale_output else 1): - residual = x[i] - shape = residual.shape - width = shape[-1] - height = shape[-2] - for j in range(len(channels)): - if j > i: - y = conv_bn_layer(x[j], filter_size=1, num_filters=channels[i], if_act=False, - name=name + '_layer_' + str(i + 1) + '_' + str(j + 1)) - y = fluid.layers.resize_bilinear(input=y, out_shape=[height, width]) - residual = fluid.layers.elementwise_add(x=residual, y=y, act=None) - elif j < i: - y = x[j] - for k in range(i - j): - if k == i - j - 1: - y = conv_bn_layer(y, filter_size=3, num_filters=channels[i], stride=2, if_act=False, - name=name + '_layer_' + str(i + 1) + '_' + str(j + 1) + '_' + str(k + 1)) - else: - y = conv_bn_layer(y, filter_size=3, num_filters=channels[j], stride=2, - name=name + '_layer_' + str(i + 1) + '_' + str(j + 1) + '_' + str(k + 1)) - residual = fluid.layers.elementwise_add(x=residual, y=y, act=None) - - residual = fluid.layers.relu(residual) - out.append(residual) - return out - -def branches(x, block_num, channels, name=None): - out = [] - for i in range(len(channels)): - residual = x[i] - for j in range(block_num): - residual = basic_block(residual, channels[i], - name=name + '_branch_layer_' + str(i + 1) + '_' + str(j + 1)) - out.append(residual) - return out - -def high_resolution_module(x, channels, multi_scale_output=True, name=None): - residual = branches(x, 4, channels, name=name) - out = fuse_layers(residual, channels, multi_scale_output=multi_scale_output, name=name) - return out - -def transition_layer(x, in_channels, out_channels, name=None): - num_in = len(in_channels) - num_out = len(out_channels) - out = [] - for i in range(num_out): - if i < num_in: - if in_channels[i] != out_channels[i]: - residual = conv_bn_layer(x[i], filter_size=3, num_filters=out_channels[i], - name=name + '_layer_' + str(i + 1)) - out.append(residual) - else: - out.append(x[i]) - else: - residual = conv_bn_layer(x[-1], filter_size=3, num_filters=out_channels[i], stride=2, - name=name + '_layer_' + str(i + 1)) - out.append(residual) - return out - -def stage(x, num_modules, channels, multi_scale_output=True, name=None): - out = x - for i in range(num_modules): - if i == num_modules - 1 and multi_scale_output == False: - out = high_resolution_module(out, channels, multi_scale_output=False, name=name + '_' + str(i + 1)) - else: - out = high_resolution_module(out, channels, name=name + '_' + str(i + 1)) - - return out - -def layer1(input, name=None): - conv = input - for i in range(4): - conv = bottleneck_block(conv, num_filters=64, downsample=True if i == 0 else False, - name=name + '_' + str(i + 1)) - return conv - -def aux_head(input, last_inp_channels, num_classes): - x = conv_bn_layer(input=input, filter_size=1, num_filters=last_inp_channels, stride=1, padding=0, name='aux_head_conv1') - x = fluid.layers.conv2d( - input=x, - num_filters=num_classes, - filter_size=1, - stride=1, - padding=0, - act=None, -# param_attr=ParamAttr(initializer=MSRA(), learning_rate=1.0, name='aux_head_conv2_weights'), - param_attr=ParamAttr(initializer=fluid.initializer.Normal(scale=0.001), learning_rate=1.0, name='aux_head_conv2_weights'), - bias_attr=ParamAttr(initializer=fluid.initializer.Constant(0.0), name="aux_head_conv2_bias") - ) - return x - -def conv3x3_ocr(input, ocr_mid_channels): - x = conv_bn_layer(input=input, filter_size=3, num_filters=ocr_mid_channels, stride=1, padding=1, name='conv3x3_ocr') - return x - -def f_pixel(input, key_channels): - x = conv_bn_layer(input=input, filter_size=1, num_filters=key_channels, stride=1, padding=0, name='f_pixel_conv1') - x = conv_bn_layer(input=x, filter_size=1, num_filters=key_channels, stride=1, padding=0, name='f_pixel_conv2') - return x - -def f_object(input, key_channels): - x = conv_bn_layer(input=input, filter_size=1, num_filters=key_channels, stride=1, padding=0, name='f_object_conv1') - x = conv_bn_layer(input=x, filter_size=1, num_filters=key_channels, stride=1, padding=0, name='f_object_conv2') - return x - -def f_down(input, key_channels): - x = conv_bn_layer(input=input, filter_size=1, num_filters=key_channels, stride=1, padding=0, name='f_down_conv') - return x - -def f_up(input, in_channels): - x = conv_bn_layer(input=input, filter_size=1, num_filters=in_channels, stride=1, padding=0, name='f_up_conv') - return x - -def object_context_block(x, proxy, in_channels, key_channels, scale): - batch_size, _, h, w = x.shape - if scale > 1: - x = fluid.layers.pool2d(x, pool_size=[scale, scale], pool_type='max') - - query = f_pixel(x, key_channels) - query = fluid.layers.reshape(query, shape=[batch_size, key_channels, query.shape[2]*query.shape[3]]) - query = fluid.layers.transpose(query, perm=[0, 2, 1]) - - key = f_object(proxy, key_channels) - key = fluid.layers.reshape(key, shape=[batch_size, key_channels, key.shape[2]*key.shape[3]]) - - value = f_down(proxy, key_channels) - value = fluid.layers.reshape(value, shape=[batch_size, key_channels, value.shape[2]*value.shape[3]]) - value = fluid.layers.transpose(value, perm=[0, 2, 1]) - - sim_map = fluid.layers.matmul(query, key) - sim_map = (key_channels**-.5) * sim_map - sim_map = fluid.layers.softmax(sim_map, axis=-1) - - context = fluid.layers.matmul(sim_map, value) - context = fluid.layers.transpose(context, perm=[0, 2, 1]) - context = fluid.layers.reshape(context, shape=[batch_size, key_channels, x.shape[2], x.shape[3]]) - context = f_up(context, in_channels) - - if scale > 1: - context = fluid.layers.resize_bilinear(context, out_shape=[h, w]) - - return context - -def ocr_gather_head(feats, probs, scale=1): - feats = fluid.layers.reshape(feats, shape=[feats.shape[0], feats.shape[1], feats.shape[2]*feats.shape[3]]) - feats = fluid.layers.transpose(feats, perm=[0, 2, 1]) - probs = fluid.layers.reshape(probs, shape=[probs.shape[0], probs.shape[1], probs.shape[2]*probs.shape[3]]) - probs = fluid.layers.softmax(scale * probs, axis=2) - ocr_context = fluid.layers.matmul(probs, feats) - ocr_context = fluid.layers.transpose(ocr_context, perm=[0, 2, 1]) - ocr_context = fluid.layers.unsqueeze(ocr_context, axes=[3]) - return ocr_context - -def ocr_distri_head(feats, proxy_feats, ocr_mid_channels, ocr_key_channels, scale=1, dropout=0.05): - context = object_context_block(feats, proxy_feats, ocr_mid_channels, ocr_key_channels, scale) - x = fluid.layers.concat([context, feats], axis=1) - x = conv_bn_layer(input=x, filter_size=1, num_filters=ocr_mid_channels, stride=1, padding=0, name='spatial_ocr_conv') - x = fluid.layers.dropout(x, dropout_prob=dropout) - return x - -def cls_head(input, num_classes): - x = fluid.layers.conv2d( - input=input, - num_filters=num_classes, - filter_size=1, - stride=1, - padding=0, - act=None, -# param_attr=ParamAttr(initializer=MSRA(), learning_rate=1.0, name='cls_head_conv_weights'), - param_attr=ParamAttr(initializer=fluid.initializer.Normal(scale=0.001), learning_rate=1.0, name='cls_head_conv_weights'), - bias_attr=ParamAttr(initializer=fluid.initializer.Constant(0.0), name="cls_head_conv_bias") - ) - return x - -def ocr_module(input, last_inp_channels, num_classes, ocr_mid_channels, ocr_key_channels): - out_aux = aux_head(input, last_inp_channels, num_classes) - feats = conv3x3_ocr(input, ocr_mid_channels) - context = ocr_gather_head(feats, out_aux) - feats = ocr_distri_head(feats, context, ocr_mid_channels, ocr_key_channels) - out = cls_head(feats, num_classes) - return out, out_aux - -def high_resolution_ocr_net(input, num_classes): - - channels_2 = cfg.MODEL.HRNET.STAGE2.NUM_CHANNELS - channels_3 = cfg.MODEL.HRNET.STAGE3.NUM_CHANNELS - channels_4 = cfg.MODEL.HRNET.STAGE4.NUM_CHANNELS - - num_modules_2 = cfg.MODEL.HRNET.STAGE2.NUM_MODULES - num_modules_3 = cfg.MODEL.HRNET.STAGE3.NUM_MODULES - num_modules_4 = cfg.MODEL.HRNET.STAGE4.NUM_MODULES - - ocr_mid_channels = cfg.MODEL.OCR.OCR_MID_CHANNELS - ocr_key_channels = cfg.MODEL.OCR.OCR_KEY_CHANNELS - - last_inp_channels = sum(channels_4) - - x = conv_bn_layer(input=input, filter_size=3, num_filters=64, stride=2, if_act=True, name='layer1_1') - x = conv_bn_layer(input=x, filter_size=3, num_filters=64, stride=2, if_act=True, name='layer1_2') - - la1 = layer1(x, name='layer2') - tr1 = transition_layer([la1], [256], channels_2, name='tr1') - st2 = stage(tr1, num_modules_2, channels_2, name='st2') - tr2 = transition_layer(st2, channels_2, channels_3, name='tr2') - st3 = stage(tr2, num_modules_3, channels_3, name='st3') - tr3 = transition_layer(st3, channels_3, channels_4, name='tr3') - st4 = stage(tr3, num_modules_4, channels_4, name='st4') - - # upsample - shape = st4[0].shape - height, width = shape[-2], shape[-1] - st4[1] = fluid.layers.resize_bilinear( - st4[1], out_shape=[height, width]) - st4[2] = fluid.layers.resize_bilinear( - st4[2], out_shape=[height, width]) - st4[3] = fluid.layers.resize_bilinear( - st4[3], out_shape=[height, width]) - - feats = fluid.layers.concat(st4, axis=1) - - out, out_aux = ocr_module(feats, last_inp_channels, num_classes, ocr_mid_channels, ocr_key_channels) - - out = fluid.layers.resize_bilinear(out, input.shape[2:]) - out_aux = fluid.layers.resize_bilinear(out_aux, input.shape[2:]) - - return out, out_aux - -def ocnet(input, num_classes): - logit = high_resolution_ocr_net(input, num_classes) - return logit - -if __name__ == '__main__': - image_shape = [-1, 3, 769, 769] - image = fluid.data(name='image', shape=image_shape, dtype='float32') - logit = ocnet(image, 4) - print("logit:", logit.shape) diff --git a/pdseg/models/modeling/ocrnet.py b/pdseg/models/modeling/ocrnet.py new file mode 100644 index 00000000..8ab8925e --- /dev/null +++ b/pdseg/models/modeling/ocrnet.py @@ -0,0 +1,493 @@ +# coding: utf8 +# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import paddle +import paddle.fluid as fluid +from paddle.fluid.initializer import MSRA +from paddle.fluid.param_attr import ParamAttr + +from utils.config import cfg + + +def conv_bn_layer(input, + filter_size, + num_filters, + stride=1, + padding=1, + num_groups=1, + if_act=True, + name=None): + conv = fluid.layers.conv2d( + input=input, + num_filters=num_filters, + filter_size=filter_size, + stride=stride, + padding=(filter_size - 1) // 2, + groups=num_groups, + act=None, + # param_attr=ParamAttr(initializer=MSRA(), learning_rate=1.0, name=name + '_weights'), + param_attr=ParamAttr( + initializer=fluid.initializer.Normal(scale=0.001), + learning_rate=1.0, + name=name + '_weights'), + bias_attr=False) + bn_name = name + '_bn' + bn = fluid.layers.batch_norm( + input=conv, + param_attr=ParamAttr( + name=bn_name + "_scale", + initializer=fluid.initializer.Constant(1.0)), + bias_attr=ParamAttr( + name=bn_name + "_offset", + initializer=fluid.initializer.Constant(0.0)), + moving_mean_name=bn_name + '_mean', + moving_variance_name=bn_name + '_variance') + if if_act: + bn = fluid.layers.relu(bn) + return bn + + +def basic_block(input, num_filters, stride=1, downsample=False, name=None): + residual = input + conv = conv_bn_layer( + input=input, + filter_size=3, + num_filters=num_filters, + stride=stride, + name=name + '_conv1') + conv = conv_bn_layer( + input=conv, + filter_size=3, + num_filters=num_filters, + if_act=False, + name=name + '_conv2') + if downsample: + residual = conv_bn_layer( + input=input, + filter_size=1, + num_filters=num_filters, + if_act=False, + name=name + '_downsample') + return fluid.layers.elementwise_add(x=residual, y=conv, act='relu') + + +def bottleneck_block(input, num_filters, stride=1, downsample=False, name=None): + residual = input + conv = conv_bn_layer( + input=input, + filter_size=1, + num_filters=num_filters, + name=name + '_conv1') + conv = conv_bn_layer( + input=conv, + filter_size=3, + num_filters=num_filters, + stride=stride, + name=name + '_conv2') + conv = conv_bn_layer( + input=conv, + filter_size=1, + num_filters=num_filters * 4, + if_act=False, + name=name + '_conv3') + if downsample: + residual = conv_bn_layer( + input=input, + filter_size=1, + num_filters=num_filters * 4, + if_act=False, + name=name + '_downsample') + return fluid.layers.elementwise_add(x=residual, y=conv, act='relu') + + +def fuse_layers(x, channels, multi_scale_output=True, name=None): + out = [] + for i in range(len(channels) if multi_scale_output else 1): + residual = x[i] + shape = residual.shape + width = shape[-1] + height = shape[-2] + for j in range(len(channels)): + if j > i: + y = conv_bn_layer( + x[j], + filter_size=1, + num_filters=channels[i], + if_act=False, + name=name + '_layer_' + str(i + 1) + '_' + str(j + 1)) + y = fluid.layers.resize_bilinear( + input=y, out_shape=[height, width]) + residual = fluid.layers.elementwise_add( + x=residual, y=y, act=None) + elif j < i: + y = x[j] + for k in range(i - j): + if k == i - j - 1: + y = conv_bn_layer( + y, + filter_size=3, + num_filters=channels[i], + stride=2, + if_act=False, + name=name + '_layer_' + str(i + 1) + '_' + + str(j + 1) + '_' + str(k + 1)) + else: + y = conv_bn_layer( + y, + filter_size=3, + num_filters=channels[j], + stride=2, + name=name + '_layer_' + str(i + 1) + '_' + + str(j + 1) + '_' + str(k + 1)) + residual = fluid.layers.elementwise_add( + x=residual, y=y, act=None) + + residual = fluid.layers.relu(residual) + out.append(residual) + return out + + +def branches(x, block_num, channels, name=None): + out = [] + for i in range(len(channels)): + residual = x[i] + for j in range(block_num): + residual = basic_block( + residual, + channels[i], + name=name + '_branch_layer_' + str(i + 1) + '_' + str(j + 1)) + out.append(residual) + return out + + +def high_resolution_module(x, channels, multi_scale_output=True, name=None): + residual = branches(x, 4, channels, name=name) + out = fuse_layers( + residual, channels, multi_scale_output=multi_scale_output, name=name) + return out + + +def transition_layer(x, in_channels, out_channels, name=None): + num_in = len(in_channels) + num_out = len(out_channels) + out = [] + for i in range(num_out): + if i < num_in: + if in_channels[i] != out_channels[i]: + residual = conv_bn_layer( + x[i], + filter_size=3, + num_filters=out_channels[i], + name=name + '_layer_' + str(i + 1)) + out.append(residual) + else: + out.append(x[i]) + else: + residual = conv_bn_layer( + x[-1], + filter_size=3, + num_filters=out_channels[i], + stride=2, + name=name + '_layer_' + str(i + 1)) + out.append(residual) + return out + + +def stage(x, num_modules, channels, multi_scale_output=True, name=None): + out = x + for i in range(num_modules): + if i == num_modules - 1 and multi_scale_output == False: + out = high_resolution_module( + out, + channels, + multi_scale_output=False, + name=name + '_' + str(i + 1)) + else: + out = high_resolution_module( + out, channels, name=name + '_' + str(i + 1)) + + return out + + +def layer1(input, name=None): + conv = input + for i in range(4): + conv = bottleneck_block( + conv, + num_filters=64, + downsample=True if i == 0 else False, + name=name + '_' + str(i + 1)) + return conv + + +def aux_head(input, last_inp_channels, num_classes): + x = conv_bn_layer( + input=input, + filter_size=1, + num_filters=last_inp_channels, + stride=1, + padding=0, + name='aux_head_conv1') + x = fluid.layers.conv2d( + input=x, + num_filters=num_classes, + filter_size=1, + stride=1, + padding=0, + act=None, + # param_attr=ParamAttr(initializer=MSRA(), learning_rate=1.0, name='aux_head_conv2_weights'), + param_attr=ParamAttr( + initializer=fluid.initializer.Normal(scale=0.001), + learning_rate=1.0, + name='aux_head_conv2_weights'), + bias_attr=ParamAttr( + initializer=fluid.initializer.Constant(0.0), + name="aux_head_conv2_bias")) + return x + + +def conv3x3_ocr(input, ocr_mid_channels): + x = conv_bn_layer( + input=input, + filter_size=3, + num_filters=ocr_mid_channels, + stride=1, + padding=1, + name='conv3x3_ocr') + return x + + +def f_pixel(input, key_channels): + x = conv_bn_layer( + input=input, + filter_size=1, + num_filters=key_channels, + stride=1, + padding=0, + name='f_pixel_conv1') + x = conv_bn_layer( + input=x, + filter_size=1, + num_filters=key_channels, + stride=1, + padding=0, + name='f_pixel_conv2') + return x + + +def f_object(input, key_channels): + x = conv_bn_layer( + input=input, + filter_size=1, + num_filters=key_channels, + stride=1, + padding=0, + name='f_object_conv1') + x = conv_bn_layer( + input=x, + filter_size=1, + num_filters=key_channels, + stride=1, + padding=0, + name='f_object_conv2') + return x + + +def f_down(input, key_channels): + x = conv_bn_layer( + input=input, + filter_size=1, + num_filters=key_channels, + stride=1, + padding=0, + name='f_down_conv') + return x + + +def f_up(input, in_channels): + x = conv_bn_layer( + input=input, + filter_size=1, + num_filters=in_channels, + stride=1, + padding=0, + name='f_up_conv') + return x + + +def object_context_block(x, proxy, in_channels, key_channels, scale): + batch_size, _, h, w = x.shape + if scale > 1: + x = fluid.layers.pool2d(x, pool_size=[scale, scale], pool_type='max') + + query = f_pixel(x, key_channels) + query = fluid.layers.reshape( + query, + shape=[batch_size, key_channels, query.shape[2] * query.shape[3]]) + query = fluid.layers.transpose(query, perm=[0, 2, 1]) + + key = f_object(proxy, key_channels) + key = fluid.layers.reshape( + key, shape=[batch_size, key_channels, key.shape[2] * key.shape[3]]) + + value = f_down(proxy, key_channels) + value = fluid.layers.reshape( + value, + shape=[batch_size, key_channels, value.shape[2] * value.shape[3]]) + value = fluid.layers.transpose(value, perm=[0, 2, 1]) + + sim_map = fluid.layers.matmul(query, key) + sim_map = (key_channels**-.5) * sim_map + sim_map = fluid.layers.softmax(sim_map, axis=-1) + + context = fluid.layers.matmul(sim_map, value) + context = fluid.layers.transpose(context, perm=[0, 2, 1]) + context = fluid.layers.reshape( + context, shape=[batch_size, key_channels, x.shape[2], x.shape[3]]) + context = f_up(context, in_channels) + + if scale > 1: + context = fluid.layers.resize_bilinear(context, out_shape=[h, w]) + + return context + + +def ocr_gather_head(feats, probs, scale=1): + feats = fluid.layers.reshape( + feats, + shape=[feats.shape[0], feats.shape[1], feats.shape[2] * feats.shape[3]]) + feats = fluid.layers.transpose(feats, perm=[0, 2, 1]) + probs = fluid.layers.reshape( + probs, + shape=[probs.shape[0], probs.shape[1], probs.shape[2] * probs.shape[3]]) + probs = fluid.layers.softmax(scale * probs, axis=2) + ocr_context = fluid.layers.matmul(probs, feats) + ocr_context = fluid.layers.transpose(ocr_context, perm=[0, 2, 1]) + ocr_context = fluid.layers.unsqueeze(ocr_context, axes=[3]) + return ocr_context + + +def ocr_distri_head(feats, + proxy_feats, + ocr_mid_channels, + ocr_key_channels, + scale=1, + dropout=0.05): + context = object_context_block(feats, proxy_feats, ocr_mid_channels, + ocr_key_channels, scale) + x = fluid.layers.concat([context, feats], axis=1) + x = conv_bn_layer( + input=x, + filter_size=1, + num_filters=ocr_mid_channels, + stride=1, + padding=0, + name='spatial_ocr_conv') + x = fluid.layers.dropout(x, dropout_prob=dropout) + return x + + +def cls_head(input, num_classes): + x = fluid.layers.conv2d( + input=input, + num_filters=num_classes, + filter_size=1, + stride=1, + padding=0, + act=None, + # param_attr=ParamAttr(initializer=MSRA(), learning_rate=1.0, name='cls_head_conv_weights'), + param_attr=ParamAttr( + initializer=fluid.initializer.Normal(scale=0.001), + learning_rate=1.0, + name='cls_head_conv_weights'), + bias_attr=ParamAttr( + initializer=fluid.initializer.Constant(0.0), + name="cls_head_conv_bias")) + return x + + +def ocr_module(input, last_inp_channels, num_classes, ocr_mid_channels, + ocr_key_channels): + out_aux = aux_head(input, last_inp_channels, num_classes) + feats = conv3x3_ocr(input, ocr_mid_channels) + context = ocr_gather_head(feats, out_aux) + feats = ocr_distri_head(feats, context, ocr_mid_channels, ocr_key_channels) + out = cls_head(feats, num_classes) + return out, out_aux + + +def high_resolution_ocr_net(input, num_classes): + + channels_2 = cfg.MODEL.HRNET.STAGE2.NUM_CHANNELS + channels_3 = cfg.MODEL.HRNET.STAGE3.NUM_CHANNELS + channels_4 = cfg.MODEL.HRNET.STAGE4.NUM_CHANNELS + + num_modules_2 = cfg.MODEL.HRNET.STAGE2.NUM_MODULES + num_modules_3 = cfg.MODEL.HRNET.STAGE3.NUM_MODULES + num_modules_4 = cfg.MODEL.HRNET.STAGE4.NUM_MODULES + + ocr_mid_channels = cfg.MODEL.OCR.OCR_MID_CHANNELS + ocr_key_channels = cfg.MODEL.OCR.OCR_KEY_CHANNELS + + last_inp_channels = sum(channels_4) + + x = conv_bn_layer( + input=input, + filter_size=3, + num_filters=64, + stride=2, + if_act=True, + name='layer1_1') + x = conv_bn_layer( + input=x, + filter_size=3, + num_filters=64, + stride=2, + if_act=True, + name='layer1_2') + + la1 = layer1(x, name='layer2') + tr1 = transition_layer([la1], [256], channels_2, name='tr1') + st2 = stage(tr1, num_modules_2, channels_2, name='st2') + tr2 = transition_layer(st2, channels_2, channels_3, name='tr2') + st3 = stage(tr2, num_modules_3, channels_3, name='st3') + tr3 = transition_layer(st3, channels_3, channels_4, name='tr3') + st4 = stage(tr3, num_modules_4, channels_4, name='st4') + + # upsample + shape = st4[0].shape + height, width = shape[-2], shape[-1] + st4[1] = fluid.layers.resize_bilinear(st4[1], out_shape=[height, width]) + st4[2] = fluid.layers.resize_bilinear(st4[2], out_shape=[height, width]) + st4[3] = fluid.layers.resize_bilinear(st4[3], out_shape=[height, width]) + + feats = fluid.layers.concat(st4, axis=1) + + out, out_aux = ocr_module(feats, last_inp_channels, num_classes, + ocr_mid_channels, ocr_key_channels) + + out = fluid.layers.resize_bilinear(out, input.shape[2:]) + out_aux = fluid.layers.resize_bilinear(out_aux, input.shape[2:]) + + return out, out_aux + + +def ocrnet(input, num_classes): + logit = high_resolution_ocr_net(input, num_classes) + return logit diff --git a/pretrained_model/download_model.py b/pretrained_model/download_model.py index bde2b886..b5ba9495 100644 --- a/pretrained_model/download_model.py +++ b/pretrained_model/download_model.py @@ -96,8 +96,8 @@ model_urls = { "https://paddleseg.bj.bcebos.com/models/hrnet_w18_bn_cityscapes.tgz", "fast_scnn_cityscapes": "https://paddleseg.bj.bcebos.com/models/fast_scnn_cityscape.tar", - "ocnet_w18_bn_cityscapes": - "https://paddleseg.bj.bcebos.com/models/ocnet_w18_bn_cityscapes.tar.gz", + "ocrnet_w18_bn_cityscapes": + "https://paddleseg.bj.bcebos.com/models/ocrnet_w18_bn_cityscapes.tar.gz", } if __name__ == "__main__": -- GitLab