Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSeg
提交
b28bc4db
P
PaddleSeg
项目概览
PaddlePaddle
/
PaddleSeg
通知
285
Star
8
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
3
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSeg
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
3
合并请求
3
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b28bc4db
编写于
9月 05, 2019
作者:
P
pengmian
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
modify pspnet
上级
963b9031
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
55 addition
and
40 deletion
+55
-40
pdseg/models/backbone/resnet.py
pdseg/models/backbone/resnet.py
+14
-13
pdseg/models/modeling/pspnet.py
pdseg/models/modeling/pspnet.py
+41
-27
未找到文件。
pdseg/models/backbone/resnet.py
浏览文件 @
b28bc4db
...
...
@@ -133,18 +133,19 @@ class ResNet():
if
layers
>=
50
:
for
block
in
range
(
len
(
depth
)):
for
i
in
range
(
depth
[
block
]):
if
layers
in
[
101
,
152
]
and
block
==
2
:
if
i
==
0
:
conv_name
=
"res"
+
str
(
block
+
2
)
+
"a"
else
:
conv_name
=
"res"
+
str
(
block
+
2
)
+
"b"
+
str
(
i
)
else
:
conv_name
=
"conv"
+
str
(
block
+
2
)
+
'_'
+
str
(
1
+
i
)
dilation_rate
=
get_dilated_rate
(
dilation_dict
,
block
)
if
self
.
stem
==
'pspnet'
:
stride
=
2
if
i
==
0
and
block
==
1
else
1
else
:
stride
=
2
if
i
==
0
and
block
!=
0
and
dilation_rate
==
1
else
1
conv
=
self
.
bottleneck_block
(
input
=
conv
,
num_filters
=
int
(
num_filters
[
block
]
*
self
.
scale
),
stride
=
stride
,
stride
=
2
if
i
==
0
and
block
!=
0
and
dilation_rate
==
1
else
1
,
name
=
conv_name
,
dilation
=
dilation_rate
)
layer_count
+=
3
...
...
@@ -172,7 +173,7 @@ class ResNet():
else
:
for
block
in
range
(
len
(
depth
)):
for
i
in
range
(
depth
[
block
]):
conv_name
=
"
conv
"
+
str
(
block
+
2
)
+
chr
(
97
+
i
)
conv_name
=
"
res
"
+
str
(
block
+
2
)
+
chr
(
97
+
i
)
conv
=
self
.
basic_block
(
input
=
conv
,
num_filters
=
num_filters
[
block
],
...
...
pdseg/models/modeling/pspnet.py
浏览文件 @
b28bc4db
...
...
@@ -12,6 +12,7 @@ from models.backbone.resnet import ResNet as resnet_backbone
from
utils.config
import
cfg
def
get_logit_interp
(
input
,
num_classes
,
out_shape
,
name
=
"logit"
):
# 根据类别数决定最后一层卷积输出, 并插值回原始尺寸
param_attr
=
fluid
.
ParamAttr
(
name
=
name
+
'weights'
,
regularizer
=
fluid
.
regularizer
.
L2DecayRegularizer
(
...
...
@@ -19,13 +20,12 @@ def get_logit_interp(input, num_classes, out_shape, name="logit"):
initializer
=
fluid
.
initializer
.
TruncatedNormal
(
loc
=
0.0
,
scale
=
0.01
))
with
scope
(
name
):
logit
=
conv
(
input
,
logit
=
conv
(
input
,
num_classes
,
filter_size
=
1
,
param_attr
=
param_attr
,
bias_attr
=
True
,
name
=
name
+
'.conv2d.output.1
'
)
name
=
name
+
'_conv
'
)
logit_interp
=
fluid
.
layers
.
resize_bilinear
(
logit
,
out_shape
=
out_shape
,
...
...
@@ -34,6 +34,11 @@ def get_logit_interp(input, num_classes, out_shape, name="logit"):
def
psp_module
(
input
,
out_features
):
# Pyramid Scene Parsing 金字塔池化模块
# 输入:backbone输出的特征
# 输出:对输入进行不同尺度pooling, 卷积操作后插值回原始尺寸,并concat
# 最后进行一个卷积及BN操作
cat_layers
=
[]
sizes
=
(
1
,
2
,
3
,
6
)
for
size
in
sizes
:
...
...
@@ -43,8 +48,10 @@ def psp_module(input, out_features):
pool_size
=
[
size
,
size
],
pool_type
=
'avg'
,
name
=
psp_name
+
'_adapool'
)
data
=
conv
(
pool
,
out_features
,
filter_size
=
1
,
bias_attr
=
True
,
name
=
psp_name
+
'.conv2d.output.1'
)
data
=
conv
(
pool
,
out_features
,
filter_size
=
1
,
bias_attr
=
True
,
name
=
psp_name
+
'_conv'
)
data_bn
=
bn
(
data
,
act
=
'relu'
)
interp
=
fluid
.
layers
.
resize_bilinear
(
data_bn
,
out_shape
=
input
.
shape
[
2
:],
...
...
@@ -52,35 +59,42 @@ def psp_module(input, out_features):
cat_layers
.
append
(
interp
)
cat_layers
=
[
input
]
+
cat_layers
[::
-
1
]
cat
=
fluid
.
layers
.
concat
(
cat_layers
,
axis
=
1
,
name
=
'psp_cat'
)
with
scope
(
"psp_conv_end"
):
psp_end_name
=
"psp_conv_end"
with
scope
(
psp_end_name
):
data
=
conv
(
cat
,
out_features
,
filter_size
=
3
,
padding
=
1
,
bias_attr
=
True
,
name
=
'psp_conv_end.conv2d.output.1'
)
name
=
psp_end_name
)
out
=
bn
(
data
,
act
=
'relu'
)
return
out
def
resnet
(
input
):
# PSPNET backbone: resnet, ĬÈresnet50
# end_points: resnetÖֹ²ã
# PSPNET backbone: resnet, 默认resnet50
# end_points: resnet终止层数
# dilation_dict: resnet block数及对应的膨胀卷积尺度
scale
=
cfg
.
MODEL
.
ICNET
.
DEPTH_MULTIPLIER
scale
=
cfg
.
MODEL
.
PSPNET
.
DEPTH_MULTIPLIER
layers
=
cfg
.
MODEL
.
PSPNET
.
LAYERS
end_points
=
layers
-
1
dilation_dict
=
{
2
:
2
,
3
:
4
}
model
=
resnet_backbone
(
layers
,
scale
,
stem
=
'pspnet'
)
data
,
_
=
model
.
net
(
input
,
end_points
=
end_points
,
dilation_dict
=
dilation_dict
)
data
,
_
=
model
.
net
(
input
,
end_points
=
end_points
,
dilation_dict
=
dilation_dict
)
return
data
def
pspnet
(
input
,
num_classes
):
# Backbone: ResNet
res
=
resnet
(
input
)
# PSP模块
psp
=
psp_module
(
res
,
512
)
#dropout = fluid.layers.dropout(psp, dropout_prob=0.1, name="dropout")
logit
=
get_logit_interp
(
psp
,
num_classes
,
input
.
shape
[
2
:])
dropout
=
fluid
.
layers
.
dropout
(
psp
,
dropout_prob
=
0.1
,
name
=
"dropout"
)
# 根据类别数决定最后一层卷积输出, 并插值回原始尺寸
logit
=
get_logit_interp
(
dropout
,
num_classes
,
input
.
shape
[
2
:])
return
logit
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录