提交 8f75ee50 编写于 作者: M michaelowenliu

Merge branch 'develop' of https://github.com/PaddlePaddle/PaddleSeg into develop

......@@ -32,6 +32,7 @@ learning_rate:
decay:
type: poly
power: 0.9
end_lr: 0.0
loss:
types:
......
......@@ -30,6 +30,7 @@ learning_rate:
decay:
type: poly
power: 0.9
end_lr: 0
loss:
types:
......
......@@ -4,9 +4,10 @@ model:
type: FCN
backbone:
type: HRNet_W18
pretrained: pretrained_model/hrnet_w18_imagenet
num_classes: 19
backbone_channels: [270]
backbone_pretrained: pretrained_model/hrnet_w18_imagenet
pretrained: Null
backbone_indices: [-1]
optimizer:
weight_decay: 0.0005
......@@ -4,6 +4,7 @@ model:
type: FCN
backbone:
type: HRNet_W18
num_classes: 2
backbone_channels: [270]
backbone_pretrained: pretrained_model/hrnet_w18_imagenet
pretrained: pretrained_model/hrnet_w18_imagenet
num_classes: 19
pretrained: Null
backbone_indices: [-1]
......@@ -4,6 +4,10 @@ model:
type: FCN
backbone:
type: HRNet_W48
pretrained: pretrained_model/hrnet_w48_imagenet
num_classes: 19
backbone_channels: [720]
backbone_pretrained: pretrained_model/hrnet_w48_imagenet
pretrained: Null
backbone_indices: [-1]
optimizer:
weight_decay: 0.0005
_base_: '../_base_/cityscapes.yml'
batch_size: 2
iters: 40000
model:
type: UNet
num_classes: 19
pretrained: Null
......@@ -16,16 +16,17 @@ import math
import os
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear
from paddle.fluid.initializer import Normal
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import SyncBatchNorm as BatchNorm
from paddle.nn import Conv2d, Linear
from paddle.nn import AdaptiveAvgPool2d, MaxPool2d, AvgPool2d
from paddleseg.cvlibs import manager
from paddleseg.utils import utils
from paddleseg.cvlibs import param_init
from paddleseg.models.common import layer_libs
__all__ = [
"HRNet_W18_Small_V1", "HRNet_W18_Small_V2", "HRNet_W18", "HRNet_W30",
......@@ -33,7 +34,7 @@ __all__ = [
]
class HRNet(fluid.dygraph.Layer):
class HRNet(nn.Layer):
"""
HRNet:Deep High-Resolution Representation Learning for Visual Recognition
https://arxiv.org/pdf/1908.07919.pdf.
......@@ -56,6 +57,7 @@ class HRNet(fluid.dygraph.Layer):
"""
def __init__(self,
pretrained=None,
stage1_num_modules=1,
stage1_num_blocks=[4],
stage1_num_channels=[64],
......@@ -70,7 +72,7 @@ class HRNet(fluid.dygraph.Layer):
stage4_num_channels=[18, 36, 72, 144],
has_se=False):
super(HRNet, self).__init__()
self.pretrained = pretrained
self.stage1_num_modules = stage1_num_modules
self.stage1_num_blocks = stage1_num_blocks
self.stage1_num_channels = stage1_num_channels
......@@ -84,22 +86,23 @@ class HRNet(fluid.dygraph.Layer):
self.stage4_num_blocks = stage4_num_blocks
self.stage4_num_channels = stage4_num_channels
self.has_se = has_se
self.feat_channels = [sum(stage4_num_channels)]
self.conv_layer1_1 = ConvBNLayer(
num_channels=3,
num_filters=64,
filter_size=3,
self.conv_layer1_1 = layer_libs.ConvBNReLU(
in_channels=3,
out_channels=64,
kernel_size=3,
stride=2,
act='relu',
name="layer1_1")
padding='same',
bias_attr=False)
self.conv_layer1_2 = ConvBNLayer(
num_channels=64,
num_filters=64,
filter_size=3,
self.conv_layer1_2 = layer_libs.ConvBNReLU(
in_channels=64,
out_channels=64,
kernel_size=3,
stride=2,
act='relu',
name="layer1_2")
padding='same',
bias_attr=False)
self.la1 = Layer1(
num_channels=64,
......@@ -144,6 +147,7 @@ class HRNet(fluid.dygraph.Layer):
num_filters=self.stage4_num_channels,
has_se=self.has_se,
name="st4")
self.init_weight()
def forward(self, x, label=None, mode='train'):
input_shape = x.shape[2:]
......@@ -162,45 +166,29 @@ class HRNet(fluid.dygraph.Layer):
st4 = self.st4(tr3)
x0_h, x0_w = st4[0].shape[2:]
x1 = fluid.layers.resize_bilinear(st4[1], out_shape=(x0_h, x0_w))
x2 = fluid.layers.resize_bilinear(st4[2], out_shape=(x0_h, x0_w))
x3 = fluid.layers.resize_bilinear(st4[3], out_shape=(x0_h, x0_w))
x = fluid.layers.concat([st4[0], x1, x2, x3], axis=1)
x1 = F.resize_bilinear(st4[1], out_shape=(x0_h, x0_w))
x2 = F.resize_bilinear(st4[2], out_shape=(x0_h, x0_w))
x3 = F.resize_bilinear(st4[3], out_shape=(x0_h, x0_w))
x = paddle.concat([st4[0], x1, x2, x3], axis=1)
return [x]
class ConvBNLayer(fluid.dygraph.Layer):
def __init__(self,
num_channels,
num_filters,
filter_size,
stride=1,
groups=1,
act="relu",
name=None):
super(ConvBNLayer, self).__init__()
self._conv = Conv2D(
num_channels=num_channels,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
bias_attr=False)
self._batch_norm = BatchNorm(num_filters)
self.act = act
def forward(self, input):
y = self._conv(input)
y = self._batch_norm(y)
if self.act == 'relu':
y = fluid.layers.relu(y)
return y
class Layer1(fluid.dygraph.Layer):
def init_weight(self):
params = self.parameters()
for param in params:
param_name = param.name
if 'batch_norm' in param_name:
if 'w_0' in param_name:
param_init.constant_init(param, value=1.0)
elif 'b_0' in param_name:
param_init.constant_init(param, value=0.0)
if 'conv' in param_name and 'w_0' in param_name:
param_init.normal_init(param, scale=0.001)
if self.pretrained is not None:
utils.load_pretrained_model(self, self.pretrained)
class Layer1(nn.Layer):
def __init__(self,
num_channels,
num_filters,
......@@ -230,7 +218,7 @@ class Layer1(fluid.dygraph.Layer):
return conv
class TransitionLayer(fluid.dygraph.Layer):
class TransitionLayer(nn.Layer):
def __init__(self, in_channels, out_channels, name=None):
super(TransitionLayer, self).__init__()
......@@ -243,20 +231,22 @@ class TransitionLayer(fluid.dygraph.Layer):
if in_channels[i] != out_channels[i]:
residual = self.add_sublayer(
"transition_{}_layer_{}".format(name, i + 1),
ConvBNLayer(
num_channels=in_channels[i],
num_filters=out_channels[i],
filter_size=3,
name=name + '_layer_' + str(i + 1)))
layer_libs.ConvBNReLU(
in_channels=in_channels[i],
out_channels=out_channels[i],
kernel_size=3,
padding='same',
bias_attr=False))
else:
residual = self.add_sublayer(
"transition_{}_layer_{}".format(name, i + 1),
ConvBNLayer(
num_channels=in_channels[-1],
num_filters=out_channels[i],
filter_size=3,
layer_libs.ConvBNReLU(
in_channels=in_channels[-1],
out_channels=out_channels[i],
kernel_size=3,
stride=2,
name=name + '_layer_' + str(i + 1)))
padding='same',
bias_attr=False))
self.conv_bn_func_list.append(residual)
def forward(self, input):
......@@ -272,7 +262,7 @@ class TransitionLayer(fluid.dygraph.Layer):
return outs
class Branches(fluid.dygraph.Layer):
class Branches(nn.Layer):
def __init__(self,
num_blocks,
in_channels,
......@@ -307,7 +297,7 @@ class Branches(fluid.dygraph.Layer):
return outs
class BottleneckBlock(fluid.dygraph.Layer):
class BottleneckBlock(nn.Layer):
def __init__(self,
num_channels,
num_filters,
......@@ -320,34 +310,35 @@ class BottleneckBlock(fluid.dygraph.Layer):
self.has_se = has_se
self.downsample = downsample
self.conv1 = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters,
filter_size=1,
act="relu",
name=name + "_conv1",
)
self.conv2 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
self.conv1 = layer_libs.ConvBNReLU(
in_channels=num_channels,
out_channels=num_filters,
kernel_size=1,
padding='same',
bias_attr=False)
self.conv2 = layer_libs.ConvBNReLU(
in_channels=num_filters,
out_channels=num_filters,
kernel_size=3,
stride=stride,
act="relu",
name=name + "_conv2")
self.conv3 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters * 4,
filter_size=1,
act=None,
name=name + "_conv3")
padding='same',
bias_attr=False)
self.conv3 = layer_libs.ConvBN(
in_channels=num_filters,
out_channels=num_filters * 4,
kernel_size=1,
padding='same',
bias_attr=False)
if self.downsample:
self.conv_down = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters * 4,
filter_size=1,
act=None,
name=name + "_downsample")
self.conv_down = layer_libs.ConvBN(
in_channels=num_channels,
out_channels=num_filters * 4,
kernel_size=1,
padding='same',
bias_attr=False)
if self.has_se:
self.se = SELayer(
......@@ -368,11 +359,12 @@ class BottleneckBlock(fluid.dygraph.Layer):
if self.has_se:
conv3 = self.se(conv3)
y = fluid.layers.elementwise_add(x=conv3, y=residual, act="relu")
y = conv3 + residual
y = F.relu(y)
return y
class BasicBlock(fluid.dygraph.Layer):
class BasicBlock(nn.Layer):
def __init__(self,
num_channels,
num_filters,
......@@ -385,28 +377,27 @@ class BasicBlock(fluid.dygraph.Layer):
self.has_se = has_se
self.downsample = downsample
self.conv1 = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters,
filter_size=3,
self.conv1 = layer_libs.ConvBNReLU(
in_channels=num_channels,
out_channels=num_filters,
kernel_size=3,
stride=stride,
act="relu",
name=name + "_conv1")
self.conv2 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
stride=1,
act=None,
name=name + "_conv2")
padding='same',
bias_attr=False)
self.conv2 = layer_libs.ConvBN(
in_channels=num_filters,
out_channels=num_filters,
kernel_size=3,
padding='same',
bias_attr=False)
if self.downsample:
self.conv_down = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters * 4,
filter_size=1,
act="relu",
name=name + "_downsample")
self.conv_down = layer_libs.ConvBNReLU(
in_channels=num_channels,
out_channels=num_filters,
kernel_size=1,
padding='same',
bias_attr=False)
if self.has_se:
self.se = SELayer(
......@@ -426,15 +417,16 @@ class BasicBlock(fluid.dygraph.Layer):
if self.has_se:
conv2 = self.se(conv2)
y = fluid.layers.elementwise_add(x=conv2, y=residual, act="relu")
y = conv2 + residual
y = F.relu(y)
return y
class SELayer(fluid.dygraph.Layer):
class SELayer(nn.Layer):
def __init__(self, num_channels, num_filters, reduction_ratio, name=None):
super(SELayer, self).__init__()
self.pool2d_gap = Pool2D(pool_type='avg', global_pooling=True)
self.pool2d_gap = AdaptiveAvgPool2d(1)
self._num_channels = num_channels
......@@ -445,9 +437,7 @@ class SELayer(fluid.dygraph.Layer):
med_ch,
act="relu",
param_attr=ParamAttr(
initializer=fluid.initializer.Uniform(-stdv, stdv),
name=name + "_sqz_weights"),
bias_attr=ParamAttr(name=name + '_sqz_offset'))
initializer=nn.initializer.Uniform(-stdv, stdv)))
stdv = 1.0 / math.sqrt(med_ch * 1.0)
self.excitation = Linear(
......@@ -455,22 +445,20 @@ class SELayer(fluid.dygraph.Layer):
num_filters,
act="sigmoid",
param_attr=ParamAttr(
initializer=fluid.initializer.Uniform(-stdv, stdv),
name=name + "_exc_weights"),
bias_attr=ParamAttr(name=name + '_exc_offset'))
initializer=nn.initializer.Uniform(-stdv, stdv)))
def forward(self, input):
pool = self.pool2d_gap(input)
pool = fluid.layers.reshape(pool, shape=[-1, self._num_channels])
pool = paddle.reshape(pool, shape=[-1, self._num_channels])
squeeze = self.squeeze(pool)
excitation = self.excitation(squeeze)
excitation = fluid.layers.reshape(
excitation = paddle.reshape(
excitation, shape=[-1, self._num_channels, 1, 1])
out = input * excitation
return out
class Stage(fluid.dygraph.Layer):
class Stage(nn.Layer):
def __init__(self,
num_channels,
num_modules,
......@@ -514,7 +502,7 @@ class Stage(fluid.dygraph.Layer):
return out
class HighResolutionModule(fluid.dygraph.Layer):
class HighResolutionModule(nn.Layer):
def __init__(self,
num_channels,
num_blocks,
......@@ -543,7 +531,7 @@ class HighResolutionModule(fluid.dygraph.Layer):
return out
class FuseLayers(fluid.dygraph.Layer):
class FuseLayers(nn.Layer):
def __init__(self,
in_channels,
out_channels,
......@@ -561,14 +549,12 @@ class FuseLayers(fluid.dygraph.Layer):
if j > i:
residual_func = self.add_sublayer(
"residual_{}_layer_{}_{}".format(name, i + 1, j + 1),
ConvBNLayer(
num_channels=in_channels[j],
num_filters=out_channels[i],
filter_size=1,
stride=1,
act=None,
name=name + '_layer_' + str(i + 1) + '_' +
str(j + 1)))
layer_libs.ConvBN(
in_channels=in_channels[j],
out_channels=out_channels[i],
kernel_size=1,
padding='same',
bias_attr=False))
self.residual_func_list.append(residual_func)
elif j < i:
pre_num_filters = in_channels[j]
......@@ -577,27 +563,25 @@ class FuseLayers(fluid.dygraph.Layer):
residual_func = self.add_sublayer(
"residual_{}_layer_{}_{}_{}".format(
name, i + 1, j + 1, k + 1),
ConvBNLayer(
num_channels=pre_num_filters,
num_filters=out_channels[i],
filter_size=3,
layer_libs.ConvBN(
in_channels=pre_num_filters,
out_channels=out_channels[i],
kernel_size=3,
stride=2,
act=None,
name=name + '_layer_' + str(i + 1) + '_' +
str(j + 1) + '_' + str(k + 1)))
padding='same',
bias_attr=False))
pre_num_filters = out_channels[i]
else:
residual_func = self.add_sublayer(
"residual_{}_layer_{}_{}_{}".format(
name, i + 1, j + 1, k + 1),
ConvBNLayer(
num_channels=pre_num_filters,
num_filters=out_channels[j],
filter_size=3,
layer_libs.ConvBNReLU(
in_channels=pre_num_filters,
out_channels=out_channels[j],
kernel_size=3,
stride=2,
act="relu",
name=name + '_layer_' + str(i + 1) + '_' +
str(j + 1) + '_' + str(k + 1)))
padding='same',
bias_attr=False))
pre_num_filters = out_channels[j]
self.residual_func_list.append(residual_func)
......@@ -612,54 +596,22 @@ class FuseLayers(fluid.dygraph.Layer):
y = self.residual_func_list[residual_func_idx](input[j])
residual_func_idx += 1
y = fluid.layers.resize_bilinear(
input=y, out_shape=residual_shape)
residual = fluid.layers.elementwise_add(
x=residual, y=y, act=None)
y = F.resize_bilinear(input=y, out_shape=residual_shape)
residual = residual + y
elif j < i:
y = input[j]
for k in range(i - j):
y = self.residual_func_list[residual_func_idx](y)
residual_func_idx += 1
residual = fluid.layers.elementwise_add(
x=residual, y=y, act=None)
residual = residual + y
layer_helper = LayerHelper(self.full_name(), act='relu')
residual = layer_helper.append_activation(residual)
residual = F.relu(residual)
outs.append(residual)
return outs
class LastClsOut(fluid.dygraph.Layer):
def __init__(self,
num_channel_list,
has_se,
num_filters_list=[32, 64, 128, 256],
name=None):
super(LastClsOut, self).__init__()
self.func_list = []
for idx in range(len(num_channel_list)):
func = self.add_sublayer(
"conv_{}_conv_{}".format(name, idx + 1),
BottleneckBlock(
num_channels=num_channel_list[idx],
num_filters=num_filters_list[idx],
has_se=has_se,
downsample=True,
name=name + 'conv_' + str(idx + 1)))
self.func_list.append(func)
def forward(self, inputs):
outs = []
for idx, input in enumerate(inputs):
out = self.func_list[idx](input)
outs.append(out)
return outs
@manager.BACKBONES.add_component
def HRNet_W18_Small_V1(**kwargs):
model = HRNet(
......
......@@ -36,64 +36,78 @@ __all__ = [
@manager.MODELS.add_component
class FCN(nn.Layer):
def __init__(self,
num_classes,
backbone,
pretrained=None,
backbone_indices=(-1, ),
channels=None):
super(FCN, self).__init__()
self.backbone = backbone
backbone_channels = [
backbone.feat_channels[i] for i in backbone_indices
]
self.head = FCNHead(num_classes, backbone_indices, backbone_channels,
channels)
utils.load_entire_model(self, pretrained)
def forward(self, input):
feat_list = self.backbone(input)
logit_list = self.head(feat_list)
return [
F.resize_bilinear(logit, input.shape[2:]) for logit in logit_list
]
class FCNHead(nn.Layer):
"""
Fully Convolutional Networks for Semantic Segmentation.
A simple implementation for Fully Convolutional Networks for Semantic Segmentation.
https://arxiv.org/abs/1411.4038
Args:
num_classes (int): the unique number of target classes.
backbone (paddle.nn.Layer): backbone networks.
model_pretrained (str): the path of pretrained model.
backbone_indices (tuple): one values in the tuple indicte the indices of output of backbone.Default -1.
backbone_channels (tuple): the same length with "backbone_indices". It indicates the channels of corresponding index.
channels (int): channels after conv layer before the last one.
"""
def __init__(self,
num_classes,
backbone,
backbone_pretrained=None,
model_pretrained=None,
backbone_indices=(-1, ),
backbone_channels=(270, ),
channels=None):
super(FCN, self).__init__()
super(FCNHead, self).__init__()
self.num_classes = num_classes
self.backbone_pretrained = backbone_pretrained
self.model_pretrained = model_pretrained
self.backbone_indices = backbone_indices
if channels is None:
channels = backbone_channels[0]
self.backbone = backbone
self.conv_last_2 = ConvBNLayer(
self.conv_1 = layer_libs.ConvBNReLU(
in_channels=backbone_channels[0],
out_channels=channels,
kernel_size=1,
padding='same',
stride=1)
self.conv_last_1 = Conv2d(
self.cls = Conv2d(
in_channels=channels,
out_channels=self.num_classes,
kernel_size=1,
stride=1,
padding=0)
if self.training:
self.init_weight()
def forward(self, x):
input_shape = x.shape[2:]
fea_list = self.backbone(x)
x = fea_list[self.backbone_indices[0]]
x = self.conv_last_2(x)
logit = self.conv_last_1(x)
logit = F.resize_bilinear(logit, input_shape)
return [logit]
def forward(self, feat_list):
logit_list = []
x = feat_list[self.backbone_indices[0]]
x = self.conv_1(x)
logit = self.cls(x)
logit_list.append(logit)
return logit_list
def init_weight(self):
params = self.parameters()
......@@ -107,50 +121,6 @@ class FCN(nn.Layer):
if 'conv' in param_name and 'w_0' in param_name:
param_init.normal_init(param, scale=0.001)
if self.model_pretrained is not None:
if os.path.exists(self.model_pretrained):
utils.load_pretrained_model(self, self.model_pretrained)
else:
raise Exception('Pretrained model is not found: {}'.format(
self.model_pretrained))
elif self.backbone_pretrained is not None:
if os.path.exists(self.backbone_pretrained):
utils.load_pretrained_model(self.backbone,
self.backbone_pretrained)
else:
raise Exception('Pretrained model is not found: {}'.format(
self.backbone_pretrained))
else:
logger.warning('No pretrained model to load, train from scratch')
class ConvBNLayer(nn.Layer):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
groups=1,
act="relu"):
super(ConvBNLayer, self).__init__()
self._conv = Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=(kernel_size - 1) // 2,
groups=groups,
bias_attr=False)
self._batch_norm = BatchNorm(out_channels)
self.act = activation.Activation(act=act)
def forward(self, input):
y = self._conv(input)
y = self._batch_norm(y)
y = self.act(y)
return y
@manager.MODELS.add_component
def fcn_hrnet_w18_small_v1(*args, **kwargs):
......
......@@ -14,83 +14,47 @@
import os
import paddle.fluid as fluid
from paddle.fluid.dygraph import Conv2D, Pool2D
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import Conv2d
from paddle.nn import SyncBatchNorm as BatchNorm
from paddleseg.cvlibs import manager
from paddleseg import utils
from paddleseg.models.common import layer_libs
class UNet(fluid.dygraph.Layer):
@manager.MODELS.add_component
class UNet(nn.Layer):
"""
U-Net: Convolutional Networks for Biomedical Image Segmentation.
https://arxiv.org/abs/1505.04597
Args:
num_classes (int): the unique number of target classes.
pretrained_model (str): the path of pretrained model.
ignore_index (int): the value of ground-truth mask would be ignored while computing loss or doing evaluation. Default 255.
pretrained (str): the path of pretrained model for fine tuning.
"""
def __init__(self, num_classes, model_pretrained=None, ignore_index=255):
def __init__(self, num_classes, pretrained=None):
super(UNet, self).__init__()
self.encode = UnetEncoder()
self.decode = UnetDecode()
self.get_logit = GetLogit(64, num_classes)
self.ignore_index = ignore_index
self.EPS = 1e-5
self.init_weight(model_pretrained)
utils.load_entire_model(self, pretrained)
def forward(self, x, label=None):
logit_list = []
encode_data, short_cuts = self.encode(x)
decode_data = self.decode(encode_data, short_cuts)
logit = self.get_logit(decode_data)
if self.training:
return self._get_loss(logit, label)
else:
score_map = fluid.layers.softmax(logit, axis=1)
score_map = fluid.layers.transpose(score_map, [0, 2, 3, 1])
pred = fluid.layers.argmax(score_map, axis=3)
pred = fluid.layers.unsqueeze(pred, axes=[3])
return pred, score_map
def init_weight(self, pretrained_model=None):
"""
Initialize the parameters of model parts.
Args:
pretrained_model ([str], optional): the path of pretrained model. Defaults to None.
"""
if pretrained_model is not None:
if os.path.exists(pretrained_model):
utils.load_pretrained_model(self, pretrained_model)
else:
raise Exception('Pretrained model is not found: {}'.format(
pretrained_model))
def _get_loss(self, logit, label):
logit = fluid.layers.transpose(logit, [0, 2, 3, 1])
label = fluid.layers.transpose(label, [0, 2, 3, 1])
mask = label != self.ignore_index
mask = fluid.layers.cast(mask, 'float32')
loss, probs = fluid.layers.softmax_with_cross_entropy(
logit,
label,
ignore_index=self.ignore_index,
return_softmax=True,
axis=-1)
loss = loss * mask
avg_loss = fluid.layers.mean(loss) / (
fluid.layers.mean(mask) + self.EPS)
label.stop_gradient = True
mask.stop_gradient = True
return avg_loss
class UnetEncoder(fluid.dygraph.Layer):
logit_list.append(logit)
return logit_list
class UnetEncoder(nn.Layer):
def __init__(self):
super(UnetEncoder, self).__init__()
self.double_conv = DoubleConv(3, 64)
......@@ -113,7 +77,7 @@ class UnetEncoder(fluid.dygraph.Layer):
return x, short_cuts
class UnetDecode(fluid.dygraph.Layer):
class UnetDecode(nn.Layer):
def __init__(self):
super(UnetDecode, self).__init__()
self.up1 = Up(512, 256)
......@@ -129,20 +93,20 @@ class UnetDecode(fluid.dygraph.Layer):
return x
class DoubleConv(fluid.dygraph.Layer):
class DoubleConv(nn.Layer):
def __init__(self, num_channels, num_filters):
super(DoubleConv, self).__init__()
self.conv0 = Conv2D(
num_channels=num_channels,
num_filters=num_filters,
filter_size=3,
self.conv0 = Conv2d(
in_channels=num_channels,
out_channels=num_filters,
kernel_size=3,
stride=1,
padding=1)
self.bn0 = BatchNorm(num_filters)
self.conv1 = Conv2D(
num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
self.conv1 = Conv2d(
in_channels=num_filters,
out_channels=num_filters,
kernel_size=3,
stride=1,
padding=1)
self.bn1 = BatchNorm(num_filters)
......@@ -150,18 +114,17 @@ class DoubleConv(fluid.dygraph.Layer):
def forward(self, x):
x = self.conv0(x)
x = self.bn0(x)
x = fluid.layers.relu(x)
x = F.relu(x)
x = self.conv1(x)
x = self.bn1(x)
x = fluid.layers.relu(x)
x = F.relu(x)
return x
class Down(fluid.dygraph.Layer):
class Down(nn.Layer):
def __init__(self, num_channels, num_filters):
super(Down, self).__init__()
self.max_pool = Pool2D(
pool_size=2, pool_type='max', pool_stride=2, pool_padding=0)
self.max_pool = nn.MaxPool2d(kernel_size=2, stride=2)
self.double_conv = DoubleConv(num_channels, num_filters)
def forward(self, x):
......@@ -170,34 +133,28 @@ class Down(fluid.dygraph.Layer):
return x
class Up(fluid.dygraph.Layer):
class Up(nn.Layer):
def __init__(self, num_channels, num_filters):
super(Up, self).__init__()
self.double_conv = DoubleConv(2 * num_channels, num_filters)
def forward(self, x, short_cut):
short_cut_shape = fluid.layers.shape(short_cut)
x = fluid.layers.resize_bilinear(x, short_cut_shape[2:])
x = fluid.layers.concat([x, short_cut], axis=1)
x = F.resize_bilinear(x, short_cut.shape[2:])
x = paddle.concat([x, short_cut], axis=1)
x = self.double_conv(x)
return x
class GetLogit(fluid.dygraph.Layer):
class GetLogit(nn.Layer):
def __init__(self, num_channels, num_classes):
super(GetLogit, self).__init__()
self.conv = Conv2D(
num_channels=num_channels,
num_filters=num_classes,
filter_size=3,
self.conv = Conv2d(
in_channels=num_channels,
out_channels=num_classes,
kernel_size=3,
stride=1,
padding=1)
def forward(self, x):
x = self.conv(x)
return x
@manager.MODELS.add_component
def unet(*args, **kwargs):
return UNet(*args, **kwargs)
......@@ -87,7 +87,7 @@ def parse_args():
def main(args):
env_info = get_environ_info()
info = ['{}: {}'.format(k, v) for k, v in env_info.items()]
info = '\n'.join(['\n', format('Environment Information', '-^48s')] + info +
info = '\n'.join(['', format('Environment Information', '-^48s')] + info +
['-' * 48])
logger.info(info)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册