diff --git a/dygraph/paddleseg/models/common/layer_libs.py b/dygraph/paddleseg/models/common/layer_libs.py index 3df230ddb3cbfbdfc698b141a20c3ee9da205093..ab0d490726db3911d41b54686b54d69a160c38d7 100644 --- a/dygraph/paddleseg/models/common/layer_libs.py +++ b/dygraph/paddleseg/models/common/layer_libs.py @@ -20,10 +20,10 @@ from paddle.nn import Conv2d from paddle.nn import SyncBatchNorm as BatchNorm -class ConvBnRelu(nn.Layer): +class ConvBNRelu(nn.Layer): def __init__(self, in_channels, out_channels, kernel_size, **kwargs): - super(ConvBnRelu, self).__init__() + super(ConvBNRelu, self).__init__() self.conv = Conv2d(in_channels, out_channels, kernel_size, **kwargs) @@ -36,10 +36,10 @@ class ConvBnRelu(nn.Layer): return x -class ConvBn(nn.Layer): +class ConvBN(nn.Layer): def __init__(self, in_channels, out_channels, kernel_size, **kwargs): - super(ConvBn, self).__init__() + super(ConvBN, self).__init__() self.conv = Conv2d(in_channels, out_channels, kernel_size, **kwargs) @@ -69,16 +69,16 @@ class ConvReluPool(nn.Layer): return x -class DepthwiseConvBnRelu(nn.Layer): +class DepthwiseConvBNRelu(nn.Layer): def __init__(self, in_channels, out_channels, kernel_size, **kwargs): - super(DepthwiseConvBnRelu, self).__init__() - self.depthwise_conv = ConvBn( + super(DepthwiseConvBNRelu, self).__init__() + self.depthwise_conv = ConvBN( in_channels, out_channels=in_channels, kernel_size=kernel_size, groups=in_channels, **kwargs) - self.piontwise_conv = ConvBnRelu( + self.piontwise_conv = ConvBNRelu( in_channels, out_channels, kernel_size=1, groups=1) def forward(self, x): @@ -105,7 +105,7 @@ class AuxLayer(nn.Layer): dropout_prob=0.1): super(AuxLayer, self).__init__() - self.conv_bn_relu = ConvBnRelu( + self.conv_bn_relu = ConvBNRelu( in_channels=in_channels, out_channels=inter_channels, kernel_size=3, @@ -123,4 +123,3 @@ class AuxLayer(nn.Layer): x = F.dropout(x, p=self.dropout_prob) x = self.conv(x) return x -