Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSeg
提交
71c4b688
P
PaddleSeg
项目概览
PaddlePaddle
/
PaddleSeg
通知
286
Star
8
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
3
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSeg
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
3
合并请求
3
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
71c4b688
编写于
9月 23, 2020
作者:
M
michaelowenliu
提交者:
GitHub
9月 23, 2020
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #400 from wuyefeilin/dygraph
update unet and fcn model
上级
02940d06
20e46282
变更
10
显示空白变更内容
内联
并排
Showing
10 changed file
with
243 addition
and
347 deletion
+243
-347
dygraph/configs/_base_/cityscapes.yml
dygraph/configs/_base_/cityscapes.yml
+1
-0
dygraph/configs/_base_/optic_disc_seg.yml
dygraph/configs/_base_/optic_disc_seg.yml
+1
-0
dygraph/configs/fcn_hrnet/fcn_hrnetw18_cityscapes_1024x512_100k.yml
...nfigs/fcn_hrnet/fcn_hrnetw18_cityscapes_1024x512_100k.yml
+3
-2
dygraph/configs/fcn_hrnet/fcn_hrnetw18_optic_disc_512x512_10k.yml
...configs/fcn_hrnet/fcn_hrnetw18_optic_disc_512x512_10k.yml
+4
-3
dygraph/configs/fcn_hrnet/fcn_hrnetw48_cityscapes_1024x512_100k.yml
...nfigs/fcn_hrnet/fcn_hrnetw48_cityscapes_1024x512_100k.yml
+6
-2
dygraph/configs/unet/unet_cityscapes_1024x512_40k.yml
dygraph/configs/unet/unet_cityscapes_1024x512_40k.yml
+9
-0
dygraph/paddleseg/models/backbones/hrnet.py
dygraph/paddleseg/models/backbones/hrnet.py
+138
-186
dygraph/paddleseg/models/fcn.py
dygraph/paddleseg/models/fcn.py
+40
-70
dygraph/paddleseg/models/unet.py
dygraph/paddleseg/models/unet.py
+39
-82
dygraph/train.py
dygraph/train.py
+2
-2
未找到文件。
dygraph/configs/_base_/cityscapes.yml
浏览文件 @
71c4b688
...
...
@@ -32,6 +32,7 @@ learning_rate:
decay
:
type
:
poly
power
:
0.9
end_lr
:
0.0
loss
:
types
:
...
...
dygraph/configs/_base_/optic_disc_seg.yml
浏览文件 @
71c4b688
...
...
@@ -30,6 +30,7 @@ learning_rate:
decay
:
type
:
poly
power
:
0.9
end_lr
:
0
loss
:
types
:
...
...
dygraph/configs/fcn_hrnet/fcn_hrnetw18_cityscapes_1024x512_100k.yml
浏览文件 @
71c4b688
...
...
@@ -4,9 +4,10 @@ model:
type
:
FCN
backbone
:
type
:
HRNet_W18
pretrained
:
pretrained_model/hrnet_w18_imagenet
num_classes
:
19
backbone_channels
:
[
270
]
backbone_
pretrained
:
pretrained_model/hrnet_w18_imagenet
pretrained
:
Null
backbone_
indices
:
[
-1
]
optimizer
:
weight_decay
:
0.0005
dygraph/configs/fcn_hrnet/fcn_hrnetw18_optic_disc_512x512_10k.yml
浏览文件 @
71c4b688
...
...
@@ -4,6 +4,7 @@ model:
type
:
FCN
backbone
:
type
:
HRNet_W18
num_classes
:
2
backbone_channels
:
[
270
]
backbone_pretrained
:
pretrained_model/hrnet_w18_imagenet
pretrained
:
pretrained_model/hrnet_w18_imagenet
num_classes
:
19
pretrained
:
Null
backbone_indices
:
[
-1
]
dygraph/configs/fcn_hrnet/fcn_hrnetw48_cityscapes_1024x512_100k.yml
浏览文件 @
71c4b688
...
...
@@ -4,6 +4,10 @@ model:
type
:
FCN
backbone
:
type
:
HRNet_W48
pretrained
:
pretrained_model/hrnet_w48_imagenet
num_classes
:
19
backbone_channels
:
[
720
]
backbone_pretrained
:
pretrained_model/hrnet_w48_imagenet
pretrained
:
Null
backbone_indices
:
[
-1
]
optimizer
:
weight_decay
:
0.0005
dygraph/configs/unet/unet_cityscapes_1024x512_40k.yml
0 → 100644
浏览文件 @
71c4b688
_base_
:
'
../_base_/cityscapes.yml'
batch_size
:
2
iters
:
40000
model
:
type
:
UNet
num_classes
:
19
pretrained
:
Null
dygraph/paddleseg/models/backbones/hrnet.py
浏览文件 @
71c4b688
...
...
@@ -16,16 +16,17 @@ import math
import
os
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
Linear
from
paddle.fluid.initializer
import
Normal
from
paddle
import
ParamAttr
import
paddle.nn
as
nn
import
paddle.nn.functional
as
F
from
paddle.nn
import
SyncBatchNorm
as
BatchNorm
from
paddle.nn
import
Conv2d
,
Linear
from
paddle.nn
import
AdaptiveAvgPool2d
,
MaxPool2d
,
AvgPool2d
from
paddleseg.cvlibs
import
manager
from
paddleseg.utils
import
utils
from
paddleseg.cvlibs
import
param_init
from
paddleseg.models.common
import
layer_libs
__all__
=
[
"HRNet_W18_Small_V1"
,
"HRNet_W18_Small_V2"
,
"HRNet_W18"
,
"HRNet_W30"
,
...
...
@@ -33,7 +34,7 @@ __all__ = [
]
class
HRNet
(
fluid
.
dygraph
.
Layer
):
class
HRNet
(
nn
.
Layer
):
"""
HRNet:Deep High-Resolution Representation Learning for Visual Recognition
https://arxiv.org/pdf/1908.07919.pdf.
...
...
@@ -56,6 +57,7 @@ class HRNet(fluid.dygraph.Layer):
"""
def
__init__
(
self
,
pretrained
=
None
,
stage1_num_modules
=
1
,
stage1_num_blocks
=
[
4
],
stage1_num_channels
=
[
64
],
...
...
@@ -70,7 +72,7 @@ class HRNet(fluid.dygraph.Layer):
stage4_num_channels
=
[
18
,
36
,
72
,
144
],
has_se
=
False
):
super
(
HRNet
,
self
).
__init__
()
self
.
pretrained
=
pretrained
self
.
stage1_num_modules
=
stage1_num_modules
self
.
stage1_num_blocks
=
stage1_num_blocks
self
.
stage1_num_channels
=
stage1_num_channels
...
...
@@ -84,22 +86,23 @@ class HRNet(fluid.dygraph.Layer):
self
.
stage4_num_blocks
=
stage4_num_blocks
self
.
stage4_num_channels
=
stage4_num_channels
self
.
has_se
=
has_se
self
.
feat_channels
=
[
sum
(
stage4_num_channels
)]
self
.
conv_layer1_1
=
ConvBNLayer
(
num
_channels
=
3
,
num_filter
s
=
64
,
filter
_size
=
3
,
self
.
conv_layer1_1
=
layer_libs
.
ConvBNReLU
(
in
_channels
=
3
,
out_channel
s
=
64
,
kernel
_size
=
3
,
stride
=
2
,
act
=
'relu
'
,
name
=
"layer1_1"
)
padding
=
'same
'
,
bias_attr
=
False
)
self
.
conv_layer1_2
=
ConvBNLayer
(
num
_channels
=
64
,
num_filter
s
=
64
,
filter
_size
=
3
,
self
.
conv_layer1_2
=
layer_libs
.
ConvBNReLU
(
in
_channels
=
64
,
out_channel
s
=
64
,
kernel
_size
=
3
,
stride
=
2
,
act
=
'relu
'
,
name
=
"layer1_2"
)
padding
=
'same
'
,
bias_attr
=
False
)
self
.
la1
=
Layer1
(
num_channels
=
64
,
...
...
@@ -144,6 +147,7 @@ class HRNet(fluid.dygraph.Layer):
num_filters
=
self
.
stage4_num_channels
,
has_se
=
self
.
has_se
,
name
=
"st4"
)
self
.
init_weight
()
def
forward
(
self
,
x
,
label
=
None
,
mode
=
'train'
):
input_shape
=
x
.
shape
[
2
:]
...
...
@@ -162,45 +166,29 @@ class HRNet(fluid.dygraph.Layer):
st4
=
self
.
st4
(
tr3
)
x0_h
,
x0_w
=
st4
[
0
].
shape
[
2
:]
x1
=
fluid
.
layers
.
resize_bilinear
(
st4
[
1
],
out_shape
=
(
x0_h
,
x0_w
))
x2
=
fluid
.
layers
.
resize_bilinear
(
st4
[
2
],
out_shape
=
(
x0_h
,
x0_w
))
x3
=
fluid
.
layers
.
resize_bilinear
(
st4
[
3
],
out_shape
=
(
x0_h
,
x0_w
))
x
=
fluid
.
layers
.
concat
([
st4
[
0
],
x1
,
x2
,
x3
],
axis
=
1
)
x1
=
F
.
resize_bilinear
(
st4
[
1
],
out_shape
=
(
x0_h
,
x0_w
))
x2
=
F
.
resize_bilinear
(
st4
[
2
],
out_shape
=
(
x0_h
,
x0_w
))
x3
=
F
.
resize_bilinear
(
st4
[
3
],
out_shape
=
(
x0_h
,
x0_w
))
x
=
paddle
.
concat
([
st4
[
0
],
x1
,
x2
,
x3
],
axis
=
1
)
return
[
x
]
class
ConvBNLayer
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
filter_size
,
stride
=
1
,
groups
=
1
,
act
=
"relu"
,
name
=
None
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
_conv
=
Conv2D
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
bias_attr
=
False
)
self
.
_batch_norm
=
BatchNorm
(
num_filters
)
self
.
act
=
act
def
forward
(
self
,
input
):
y
=
self
.
_conv
(
input
)
y
=
self
.
_batch_norm
(
y
)
if
self
.
act
==
'relu'
:
y
=
fluid
.
layers
.
relu
(
y
)
return
y
class
Layer1
(
fluid
.
dygraph
.
Layer
):
def
init_weight
(
self
):
params
=
self
.
parameters
()
for
param
in
params
:
param_name
=
param
.
name
if
'batch_norm'
in
param_name
:
if
'w_0'
in
param_name
:
param_init
.
constant_init
(
param
,
value
=
1.0
)
elif
'b_0'
in
param_name
:
param_init
.
constant_init
(
param
,
value
=
0.0
)
if
'conv'
in
param_name
and
'w_0'
in
param_name
:
param_init
.
normal_init
(
param
,
scale
=
0.001
)
if
self
.
pretrained
is
not
None
:
utils
.
load_pretrained_model
(
self
,
self
.
pretrained
)
class
Layer1
(
nn
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
...
...
@@ -230,7 +218,7 @@ class Layer1(fluid.dygraph.Layer):
return
conv
class
TransitionLayer
(
fluid
.
dygraph
.
Layer
):
class
TransitionLayer
(
nn
.
Layer
):
def
__init__
(
self
,
in_channels
,
out_channels
,
name
=
None
):
super
(
TransitionLayer
,
self
).
__init__
()
...
...
@@ -243,20 +231,22 @@ class TransitionLayer(fluid.dygraph.Layer):
if
in_channels
[
i
]
!=
out_channels
[
i
]:
residual
=
self
.
add_sublayer
(
"transition_{}_layer_{}"
.
format
(
name
,
i
+
1
),
ConvBNLayer
(
num_channels
=
in_channels
[
i
],
num_filters
=
out_channels
[
i
],
filter_size
=
3
,
name
=
name
+
'_layer_'
+
str
(
i
+
1
)))
layer_libs
.
ConvBNReLU
(
in_channels
=
in_channels
[
i
],
out_channels
=
out_channels
[
i
],
kernel_size
=
3
,
padding
=
'same'
,
bias_attr
=
False
))
else
:
residual
=
self
.
add_sublayer
(
"transition_{}_layer_{}"
.
format
(
name
,
i
+
1
),
ConvBNLayer
(
num
_channels
=
in_channels
[
-
1
],
num_filter
s
=
out_channels
[
i
],
filter
_size
=
3
,
layer_libs
.
ConvBNReLU
(
in
_channels
=
in_channels
[
-
1
],
out_channel
s
=
out_channels
[
i
],
kernel
_size
=
3
,
stride
=
2
,
name
=
name
+
'_layer_'
+
str
(
i
+
1
)))
padding
=
'same'
,
bias_attr
=
False
))
self
.
conv_bn_func_list
.
append
(
residual
)
def
forward
(
self
,
input
):
...
...
@@ -272,7 +262,7 @@ class TransitionLayer(fluid.dygraph.Layer):
return
outs
class
Branches
(
fluid
.
dygraph
.
Layer
):
class
Branches
(
nn
.
Layer
):
def
__init__
(
self
,
num_blocks
,
in_channels
,
...
...
@@ -307,7 +297,7 @@ class Branches(fluid.dygraph.Layer):
return
outs
class
BottleneckBlock
(
fluid
.
dygraph
.
Layer
):
class
BottleneckBlock
(
nn
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
...
...
@@ -320,34 +310,35 @@ class BottleneckBlock(fluid.dygraph.Layer):
self
.
has_se
=
has_se
self
.
downsample
=
downsample
self
.
conv1
=
ConvBNLayer
(
num
_channels
=
num_channels
,
num_filter
s
=
num_filters
,
filter
_size
=
1
,
act
=
"relu"
,
name
=
name
+
"_conv1"
,
)
self
.
conv2
=
ConvBNLayer
(
num
_channels
=
num_filters
,
num_filter
s
=
num_filters
,
filter
_size
=
3
,
self
.
conv1
=
layer_libs
.
ConvBNReLU
(
in
_channels
=
num_channels
,
out_channel
s
=
num_filters
,
kernel
_size
=
1
,
padding
=
'same'
,
bias_attr
=
False
)
self
.
conv2
=
layer_libs
.
ConvBNReLU
(
in
_channels
=
num_filters
,
out_channel
s
=
num_filters
,
kernel
_size
=
3
,
stride
=
stride
,
act
=
"relu"
,
name
=
name
+
"_conv2"
)
self
.
conv3
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
act
=
None
,
name
=
name
+
"_conv3"
)
padding
=
'same'
,
bias_attr
=
False
)
self
.
conv3
=
layer_libs
.
ConvBN
(
in_channels
=
num_filters
,
out_channels
=
num_filters
*
4
,
kernel_size
=
1
,
padding
=
'same'
,
bias_attr
=
False
)
if
self
.
downsample
:
self
.
conv_down
=
ConvBNLayer
(
num
_channels
=
num_channels
,
num_filter
s
=
num_filters
*
4
,
filter
_size
=
1
,
act
=
None
,
name
=
name
+
"_downsample"
)
self
.
conv_down
=
layer_libs
.
ConvBN
(
in
_channels
=
num_channels
,
out_channel
s
=
num_filters
*
4
,
kernel
_size
=
1
,
padding
=
'same'
,
bias_attr
=
False
)
if
self
.
has_se
:
self
.
se
=
SELayer
(
...
...
@@ -368,11 +359,12 @@ class BottleneckBlock(fluid.dygraph.Layer):
if
self
.
has_se
:
conv3
=
self
.
se
(
conv3
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
conv3
,
y
=
residual
,
act
=
"relu"
)
y
=
conv3
+
residual
y
=
F
.
relu
(
y
)
return
y
class
BasicBlock
(
fluid
.
dygraph
.
Layer
):
class
BasicBlock
(
nn
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
...
...
@@ -385,28 +377,27 @@ class BasicBlock(fluid.dygraph.Layer):
self
.
has_se
=
has_se
self
.
downsample
=
downsample
self
.
conv1
=
ConvBNLayer
(
num
_channels
=
num_channels
,
num_filter
s
=
num_filters
,
filter
_size
=
3
,
self
.
conv1
=
layer_libs
.
ConvBNReLU
(
in
_channels
=
num_channels
,
out_channel
s
=
num_filters
,
kernel
_size
=
3
,
stride
=
stride
,
act
=
"relu"
,
name
=
name
+
"_conv1"
)
self
.
conv2
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
,
filter_size
=
3
,
stride
=
1
,
act
=
None
,
name
=
name
+
"_conv2"
)
padding
=
'same'
,
bias_attr
=
False
)
self
.
conv2
=
layer_libs
.
ConvBN
(
in_channels
=
num_filters
,
out_channels
=
num_filters
,
kernel_size
=
3
,
padding
=
'same'
,
bias_attr
=
False
)
if
self
.
downsample
:
self
.
conv_down
=
ConvBNLayer
(
num
_channels
=
num_channels
,
num_filters
=
num_filters
*
4
,
filter
_size
=
1
,
act
=
"relu"
,
name
=
name
+
"_downsample"
)
self
.
conv_down
=
layer_libs
.
ConvBNReLU
(
in
_channels
=
num_channels
,
out_channels
=
num_filters
,
kernel
_size
=
1
,
padding
=
'same'
,
bias_attr
=
False
)
if
self
.
has_se
:
self
.
se
=
SELayer
(
...
...
@@ -426,15 +417,16 @@ class BasicBlock(fluid.dygraph.Layer):
if
self
.
has_se
:
conv2
=
self
.
se
(
conv2
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
conv2
,
y
=
residual
,
act
=
"relu"
)
y
=
conv2
+
residual
y
=
F
.
relu
(
y
)
return
y
class
SELayer
(
fluid
.
dygraph
.
Layer
):
class
SELayer
(
nn
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
reduction_ratio
,
name
=
None
):
super
(
SELayer
,
self
).
__init__
()
self
.
pool2d_gap
=
Pool2D
(
pool_type
=
'avg'
,
global_pooling
=
True
)
self
.
pool2d_gap
=
AdaptiveAvgPool2d
(
1
)
self
.
_num_channels
=
num_channels
...
...
@@ -445,9 +437,7 @@ class SELayer(fluid.dygraph.Layer):
med_ch
,
act
=
"relu"
,
param_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
),
name
=
name
+
"_sqz_weights"
),
bias_attr
=
ParamAttr
(
name
=
name
+
'_sqz_offset'
))
initializer
=
nn
.
initializer
.
Uniform
(
-
stdv
,
stdv
)))
stdv
=
1.0
/
math
.
sqrt
(
med_ch
*
1.0
)
self
.
excitation
=
Linear
(
...
...
@@ -455,22 +445,20 @@ class SELayer(fluid.dygraph.Layer):
num_filters
,
act
=
"sigmoid"
,
param_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
),
name
=
name
+
"_exc_weights"
),
bias_attr
=
ParamAttr
(
name
=
name
+
'_exc_offset'
))
initializer
=
nn
.
initializer
.
Uniform
(
-
stdv
,
stdv
)))
def
forward
(
self
,
input
):
pool
=
self
.
pool2d_gap
(
input
)
pool
=
fluid
.
layers
.
reshape
(
pool
,
shape
=
[
-
1
,
self
.
_num_channels
])
pool
=
paddle
.
reshape
(
pool
,
shape
=
[
-
1
,
self
.
_num_channels
])
squeeze
=
self
.
squeeze
(
pool
)
excitation
=
self
.
excitation
(
squeeze
)
excitation
=
fluid
.
layers
.
reshape
(
excitation
=
paddle
.
reshape
(
excitation
,
shape
=
[
-
1
,
self
.
_num_channels
,
1
,
1
])
out
=
input
*
excitation
return
out
class
Stage
(
fluid
.
dygraph
.
Layer
):
class
Stage
(
nn
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_modules
,
...
...
@@ -514,7 +502,7 @@ class Stage(fluid.dygraph.Layer):
return
out
class
HighResolutionModule
(
fluid
.
dygraph
.
Layer
):
class
HighResolutionModule
(
nn
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_blocks
,
...
...
@@ -543,7 +531,7 @@ class HighResolutionModule(fluid.dygraph.Layer):
return
out
class
FuseLayers
(
fluid
.
dygraph
.
Layer
):
class
FuseLayers
(
nn
.
Layer
):
def
__init__
(
self
,
in_channels
,
out_channels
,
...
...
@@ -561,14 +549,12 @@ class FuseLayers(fluid.dygraph.Layer):
if
j
>
i
:
residual_func
=
self
.
add_sublayer
(
"residual_{}_layer_{}_{}"
.
format
(
name
,
i
+
1
,
j
+
1
),
ConvBNLayer
(
num_channels
=
in_channels
[
j
],
num_filters
=
out_channels
[
i
],
filter_size
=
1
,
stride
=
1
,
act
=
None
,
name
=
name
+
'_layer_'
+
str
(
i
+
1
)
+
'_'
+
str
(
j
+
1
)))
layer_libs
.
ConvBN
(
in_channels
=
in_channels
[
j
],
out_channels
=
out_channels
[
i
],
kernel_size
=
1
,
padding
=
'same'
,
bias_attr
=
False
))
self
.
residual_func_list
.
append
(
residual_func
)
elif
j
<
i
:
pre_num_filters
=
in_channels
[
j
]
...
...
@@ -577,27 +563,25 @@ class FuseLayers(fluid.dygraph.Layer):
residual_func
=
self
.
add_sublayer
(
"residual_{}_layer_{}_{}_{}"
.
format
(
name
,
i
+
1
,
j
+
1
,
k
+
1
),
ConvBNLayer
(
num
_channels
=
pre_num_filters
,
num_filter
s
=
out_channels
[
i
],
filter
_size
=
3
,
layer_libs
.
ConvBN
(
in
_channels
=
pre_num_filters
,
out_channel
s
=
out_channels
[
i
],
kernel
_size
=
3
,
stride
=
2
,
act
=
None
,
name
=
name
+
'_layer_'
+
str
(
i
+
1
)
+
'_'
+
str
(
j
+
1
)
+
'_'
+
str
(
k
+
1
)))
padding
=
'same'
,
bias_attr
=
False
))
pre_num_filters
=
out_channels
[
i
]
else
:
residual_func
=
self
.
add_sublayer
(
"residual_{}_layer_{}_{}_{}"
.
format
(
name
,
i
+
1
,
j
+
1
,
k
+
1
),
ConvBNLayer
(
num
_channels
=
pre_num_filters
,
num_filter
s
=
out_channels
[
j
],
filter
_size
=
3
,
layer_libs
.
ConvBNReLU
(
in
_channels
=
pre_num_filters
,
out_channel
s
=
out_channels
[
j
],
kernel
_size
=
3
,
stride
=
2
,
act
=
"relu"
,
name
=
name
+
'_layer_'
+
str
(
i
+
1
)
+
'_'
+
str
(
j
+
1
)
+
'_'
+
str
(
k
+
1
)))
padding
=
'same'
,
bias_attr
=
False
))
pre_num_filters
=
out_channels
[
j
]
self
.
residual_func_list
.
append
(
residual_func
)
...
...
@@ -612,54 +596,22 @@ class FuseLayers(fluid.dygraph.Layer):
y
=
self
.
residual_func_list
[
residual_func_idx
](
input
[
j
])
residual_func_idx
+=
1
y
=
fluid
.
layers
.
resize_bilinear
(
input
=
y
,
out_shape
=
residual_shape
)
residual
=
fluid
.
layers
.
elementwise_add
(
x
=
residual
,
y
=
y
,
act
=
None
)
y
=
F
.
resize_bilinear
(
input
=
y
,
out_shape
=
residual_shape
)
residual
=
residual
+
y
elif
j
<
i
:
y
=
input
[
j
]
for
k
in
range
(
i
-
j
):
y
=
self
.
residual_func_list
[
residual_func_idx
](
y
)
residual_func_idx
+=
1
residual
=
fluid
.
layers
.
elementwise_add
(
x
=
residual
,
y
=
y
,
act
=
None
)
residual
=
residual
+
y
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
'relu'
)
residual
=
layer_helper
.
append_activation
(
residual
)
residual
=
F
.
relu
(
residual
)
outs
.
append
(
residual
)
return
outs
class
LastClsOut
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_channel_list
,
has_se
,
num_filters_list
=
[
32
,
64
,
128
,
256
],
name
=
None
):
super
(
LastClsOut
,
self
).
__init__
()
self
.
func_list
=
[]
for
idx
in
range
(
len
(
num_channel_list
)):
func
=
self
.
add_sublayer
(
"conv_{}_conv_{}"
.
format
(
name
,
idx
+
1
),
BottleneckBlock
(
num_channels
=
num_channel_list
[
idx
],
num_filters
=
num_filters_list
[
idx
],
has_se
=
has_se
,
downsample
=
True
,
name
=
name
+
'conv_'
+
str
(
idx
+
1
)))
self
.
func_list
.
append
(
func
)
def
forward
(
self
,
inputs
):
outs
=
[]
for
idx
,
input
in
enumerate
(
inputs
):
out
=
self
.
func_list
[
idx
](
input
)
outs
.
append
(
out
)
return
outs
@
manager
.
BACKBONES
.
add_component
def
HRNet_W18_Small_V1
(
**
kwargs
):
model
=
HRNet
(
...
...
dygraph/paddleseg/models/fcn.py
浏览文件 @
71c4b688
...
...
@@ -36,64 +36,78 @@ __all__ = [
@
manager
.
MODELS
.
add_component
class
FCN
(
nn
.
Layer
):
def
__init__
(
self
,
num_classes
,
backbone
,
pretrained
=
None
,
backbone_indices
=
(
-
1
,
),
channels
=
None
):
super
(
FCN
,
self
).
__init__
()
self
.
backbone
=
backbone
backbone_channels
=
[
backbone
.
feat_channels
[
i
]
for
i
in
backbone_indices
]
self
.
head
=
FCNHead
(
num_classes
,
backbone_indices
,
backbone_channels
,
channels
)
utils
.
load_entire_model
(
self
,
pretrained
)
def
forward
(
self
,
input
):
feat_list
=
self
.
backbone
(
input
)
logit_list
=
self
.
head
(
feat_list
)
return
[
F
.
resize_bilinear
(
logit
,
input
.
shape
[
2
:])
for
logit
in
logit_list
]
class
FCNHead
(
nn
.
Layer
):
"""
Fully Convolutional Networks for Semantic Segmentation.
A simple implementation for
Fully Convolutional Networks for Semantic Segmentation.
https://arxiv.org/abs/1411.4038
Args:
num_classes (int): the unique number of target classes.
backbone (paddle.nn.Layer): backbone networks.
model_pretrained (str): the path of pretrained model.
backbone_indices (tuple): one values in the tuple indicte the indices of output of backbone.Default -1.
backbone_channels (tuple): the same length with "backbone_indices". It indicates the channels of corresponding index.
channels (int): channels after conv layer before the last one.
"""
def
__init__
(
self
,
num_classes
,
backbone
,
backbone_pretrained
=
None
,
model_pretrained
=
None
,
backbone_indices
=
(
-
1
,
),
backbone_channels
=
(
270
,
),
channels
=
None
):
super
(
FCN
,
self
).
__init__
()
super
(
FCN
Head
,
self
).
__init__
()
self
.
num_classes
=
num_classes
self
.
backbone_pretrained
=
backbone_pretrained
self
.
model_pretrained
=
model_pretrained
self
.
backbone_indices
=
backbone_indices
if
channels
is
None
:
channels
=
backbone_channels
[
0
]
self
.
backbone
=
backbone
self
.
conv_last_2
=
ConvBNLayer
(
self
.
conv_1
=
layer_libs
.
ConvBNReLU
(
in_channels
=
backbone_channels
[
0
],
out_channels
=
channels
,
kernel_size
=
1
,
padding
=
'same'
,
stride
=
1
)
self
.
c
onv_last_1
=
Conv2d
(
self
.
c
ls
=
Conv2d
(
in_channels
=
channels
,
out_channels
=
self
.
num_classes
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
)
if
self
.
training
:
self
.
init_weight
()
def
forward
(
self
,
x
):
input_shape
=
x
.
shape
[
2
:]
fea_list
=
self
.
backbone
(
x
)
x
=
fea_list
[
self
.
backbone_indices
[
0
]]
x
=
self
.
conv_last_2
(
x
)
logit
=
self
.
conv_last_1
(
x
)
logit
=
F
.
resize_bilinear
(
logit
,
input_shape
)
return
[
logit
]
def
forward
(
self
,
feat_list
):
logit_list
=
[]
x
=
feat_list
[
self
.
backbone_indices
[
0
]]
x
=
self
.
conv_1
(
x
)
logit
=
self
.
cls
(
x
)
logit_list
.
append
(
logit
)
return
logit_list
def
init_weight
(
self
):
params
=
self
.
parameters
()
...
...
@@ -107,50 +121,6 @@ class FCN(nn.Layer):
if
'conv'
in
param_name
and
'w_0'
in
param_name
:
param_init
.
normal_init
(
param
,
scale
=
0.001
)
if
self
.
model_pretrained
is
not
None
:
if
os
.
path
.
exists
(
self
.
model_pretrained
):
utils
.
load_pretrained_model
(
self
,
self
.
model_pretrained
)
else
:
raise
Exception
(
'Pretrained model is not found: {}'
.
format
(
self
.
model_pretrained
))
elif
self
.
backbone_pretrained
is
not
None
:
if
os
.
path
.
exists
(
self
.
backbone_pretrained
):
utils
.
load_pretrained_model
(
self
.
backbone
,
self
.
backbone_pretrained
)
else
:
raise
Exception
(
'Pretrained model is not found: {}'
.
format
(
self
.
backbone_pretrained
))
else
:
logger
.
warning
(
'No pretrained model to load, train from scratch'
)
class
ConvBNLayer
(
nn
.
Layer
):
def
__init__
(
self
,
in_channels
,
out_channels
,
kernel_size
,
stride
=
1
,
groups
=
1
,
act
=
"relu"
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
_conv
=
Conv2d
(
in_channels
=
in_channels
,
out_channels
=
out_channels
,
kernel_size
=
kernel_size
,
stride
=
stride
,
padding
=
(
kernel_size
-
1
)
//
2
,
groups
=
groups
,
bias_attr
=
False
)
self
.
_batch_norm
=
BatchNorm
(
out_channels
)
self
.
act
=
activation
.
Activation
(
act
=
act
)
def
forward
(
self
,
input
):
y
=
self
.
_conv
(
input
)
y
=
self
.
_batch_norm
(
y
)
y
=
self
.
act
(
y
)
return
y
@
manager
.
MODELS
.
add_component
def
fcn_hrnet_w18_small_v1
(
*
args
,
**
kwargs
):
...
...
dygraph/paddleseg/models/unet.py
浏览文件 @
71c4b688
...
...
@@ -14,83 +14,47 @@
import
os
import
paddle.fluid
as
fluid
from
paddle.fluid.dygraph
import
Conv2D
,
Pool2D
import
paddle
import
paddle.nn
as
nn
import
paddle.nn.functional
as
F
from
paddle.nn
import
Conv2d
from
paddle.nn
import
SyncBatchNorm
as
BatchNorm
from
paddleseg.cvlibs
import
manager
from
paddleseg
import
utils
from
paddleseg.models.common
import
layer_libs
class
UNet
(
fluid
.
dygraph
.
Layer
):
@
manager
.
MODELS
.
add_component
class
UNet
(
nn
.
Layer
):
"""
U-Net: Convolutional Networks for Biomedical Image Segmentation.
https://arxiv.org/abs/1505.04597
Args:
num_classes (int): the unique number of target classes.
pretrained_model (str): the path of pretrained model.
ignore_index (int): the value of ground-truth mask would be ignored while computing loss or doing evaluation. Default 255.
pretrained (str): the path of pretrained model for fine tuning.
"""
def
__init__
(
self
,
num_classes
,
model_pretrained
=
None
,
ignore_index
=
255
):
def
__init__
(
self
,
num_classes
,
pretrained
=
None
):
super
(
UNet
,
self
).
__init__
()
self
.
encode
=
UnetEncoder
()
self
.
decode
=
UnetDecode
()
self
.
get_logit
=
GetLogit
(
64
,
num_classes
)
self
.
ignore_index
=
ignore_index
self
.
EPS
=
1e-5
self
.
init_weight
(
model_
pretrained
)
utils
.
load_entire_model
(
self
,
pretrained
)
def
forward
(
self
,
x
,
label
=
None
):
logit_list
=
[]
encode_data
,
short_cuts
=
self
.
encode
(
x
)
decode_data
=
self
.
decode
(
encode_data
,
short_cuts
)
logit
=
self
.
get_logit
(
decode_data
)
if
self
.
training
:
return
self
.
_get_loss
(
logit
,
label
)
else
:
score_map
=
fluid
.
layers
.
softmax
(
logit
,
axis
=
1
)
score_map
=
fluid
.
layers
.
transpose
(
score_map
,
[
0
,
2
,
3
,
1
])
pred
=
fluid
.
layers
.
argmax
(
score_map
,
axis
=
3
)
pred
=
fluid
.
layers
.
unsqueeze
(
pred
,
axes
=
[
3
])
return
pred
,
score_map
def
init_weight
(
self
,
pretrained_model
=
None
):
"""
Initialize the parameters of model parts.
Args:
pretrained_model ([str], optional): the path of pretrained model. Defaults to None.
"""
if
pretrained_model
is
not
None
:
if
os
.
path
.
exists
(
pretrained_model
):
utils
.
load_pretrained_model
(
self
,
pretrained_model
)
else
:
raise
Exception
(
'Pretrained model is not found: {}'
.
format
(
pretrained_model
))
def
_get_loss
(
self
,
logit
,
label
):
logit
=
fluid
.
layers
.
transpose
(
logit
,
[
0
,
2
,
3
,
1
])
label
=
fluid
.
layers
.
transpose
(
label
,
[
0
,
2
,
3
,
1
])
mask
=
label
!=
self
.
ignore_index
mask
=
fluid
.
layers
.
cast
(
mask
,
'float32'
)
loss
,
probs
=
fluid
.
layers
.
softmax_with_cross_entropy
(
logit
,
label
,
ignore_index
=
self
.
ignore_index
,
return_softmax
=
True
,
axis
=-
1
)
loss
=
loss
*
mask
avg_loss
=
fluid
.
layers
.
mean
(
loss
)
/
(
fluid
.
layers
.
mean
(
mask
)
+
self
.
EPS
)
label
.
stop_gradient
=
True
mask
.
stop_gradient
=
True
return
avg_loss
class
UnetEncoder
(
fluid
.
dygraph
.
Layer
):
logit_list
.
append
(
logit
)
return
logit_list
class
UnetEncoder
(
nn
.
Layer
):
def
__init__
(
self
):
super
(
UnetEncoder
,
self
).
__init__
()
self
.
double_conv
=
DoubleConv
(
3
,
64
)
...
...
@@ -113,7 +77,7 @@ class UnetEncoder(fluid.dygraph.Layer):
return
x
,
short_cuts
class
UnetDecode
(
fluid
.
dygraph
.
Layer
):
class
UnetDecode
(
nn
.
Layer
):
def
__init__
(
self
):
super
(
UnetDecode
,
self
).
__init__
()
self
.
up1
=
Up
(
512
,
256
)
...
...
@@ -129,20 +93,20 @@ class UnetDecode(fluid.dygraph.Layer):
return
x
class
DoubleConv
(
fluid
.
dygraph
.
Layer
):
class
DoubleConv
(
nn
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
):
super
(
DoubleConv
,
self
).
__init__
()
self
.
conv0
=
Conv2
D
(
num
_channels
=
num_channels
,
num_filter
s
=
num_filters
,
filter
_size
=
3
,
self
.
conv0
=
Conv2
d
(
in
_channels
=
num_channels
,
out_channel
s
=
num_filters
,
kernel
_size
=
3
,
stride
=
1
,
padding
=
1
)
self
.
bn0
=
BatchNorm
(
num_filters
)
self
.
conv1
=
Conv2
D
(
num
_channels
=
num_filters
,
num_filter
s
=
num_filters
,
filter
_size
=
3
,
self
.
conv1
=
Conv2
d
(
in
_channels
=
num_filters
,
out_channel
s
=
num_filters
,
kernel
_size
=
3
,
stride
=
1
,
padding
=
1
)
self
.
bn1
=
BatchNorm
(
num_filters
)
...
...
@@ -150,18 +114,17 @@ class DoubleConv(fluid.dygraph.Layer):
def
forward
(
self
,
x
):
x
=
self
.
conv0
(
x
)
x
=
self
.
bn0
(
x
)
x
=
fluid
.
layers
.
relu
(
x
)
x
=
F
.
relu
(
x
)
x
=
self
.
conv1
(
x
)
x
=
self
.
bn1
(
x
)
x
=
fluid
.
layers
.
relu
(
x
)
x
=
F
.
relu
(
x
)
return
x
class
Down
(
fluid
.
dygraph
.
Layer
):
class
Down
(
nn
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
):
super
(
Down
,
self
).
__init__
()
self
.
max_pool
=
Pool2D
(
pool_size
=
2
,
pool_type
=
'max'
,
pool_stride
=
2
,
pool_padding
=
0
)
self
.
max_pool
=
nn
.
MaxPool2d
(
kernel_size
=
2
,
stride
=
2
)
self
.
double_conv
=
DoubleConv
(
num_channels
,
num_filters
)
def
forward
(
self
,
x
):
...
...
@@ -170,34 +133,28 @@ class Down(fluid.dygraph.Layer):
return
x
class
Up
(
fluid
.
dygraph
.
Layer
):
class
Up
(
nn
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
):
super
(
Up
,
self
).
__init__
()
self
.
double_conv
=
DoubleConv
(
2
*
num_channels
,
num_filters
)
def
forward
(
self
,
x
,
short_cut
):
short_cut_shape
=
fluid
.
layers
.
shape
(
short_cut
)
x
=
fluid
.
layers
.
resize_bilinear
(
x
,
short_cut_shape
[
2
:])
x
=
fluid
.
layers
.
concat
([
x
,
short_cut
],
axis
=
1
)
x
=
F
.
resize_bilinear
(
x
,
short_cut
.
shape
[
2
:])
x
=
paddle
.
concat
([
x
,
short_cut
],
axis
=
1
)
x
=
self
.
double_conv
(
x
)
return
x
class
GetLogit
(
fluid
.
dygraph
.
Layer
):
class
GetLogit
(
nn
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_classes
):
super
(
GetLogit
,
self
).
__init__
()
self
.
conv
=
Conv2
D
(
num
_channels
=
num_channels
,
num_filter
s
=
num_classes
,
filter
_size
=
3
,
self
.
conv
=
Conv2
d
(
in
_channels
=
num_channels
,
out_channel
s
=
num_classes
,
kernel
_size
=
3
,
stride
=
1
,
padding
=
1
)
def
forward
(
self
,
x
):
x
=
self
.
conv
(
x
)
return
x
@
manager
.
MODELS
.
add_component
def
unet
(
*
args
,
**
kwargs
):
return
UNet
(
*
args
,
**
kwargs
)
dygraph/train.py
浏览文件 @
71c4b688
...
...
@@ -19,7 +19,7 @@ from paddle.distributed import ParallelEnv
import
paddleseg
from
paddleseg.cvlibs
import
manager
,
Config
from
paddleseg.utils
import
get_environ_info
,
logger
,
from
paddleseg.utils
import
get_environ_info
,
logger
from
paddleseg.core
import
train
...
...
@@ -87,7 +87,7 @@ def parse_args():
def
main
(
args
):
env_info
=
get_environ_info
()
info
=
[
'{}: {}'
.
format
(
k
,
v
)
for
k
,
v
in
env_info
.
items
()]
info
=
'
\n
'
.
join
([
'
\n
'
,
format
(
'Environment Information'
,
'-^48s'
)]
+
info
+
info
=
'
\n
'
.
join
([
''
,
format
(
'Environment Information'
,
'-^48s'
)]
+
info
+
[
'-'
*
48
])
logger
.
info
(
info
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录