提交 3402f5b1 编写于 作者: C chenguowei01

updata optflow

上级 2942cfe6
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import os
import numpy as np
import cv2
import os
def get_round(data):
round = 0.5 if data >= 0 else -0.5
return (int)(data + round)
def humanseg_tracking(pre_gray, cur_gray, prev_cfd, dl_weights, disflow):
def human_seg_tracking(pre_gray, cur_gray, prev_cfd, dl_weights, disflow):
"""计算光流跟踪匹配点和光流图
输入参数:
pre_gray: 上一帧灰度图
......@@ -31,131 +21,102 @@ def humanseg_tracking(pre_gray, cur_gray, prev_cfd, dl_weights, disflow):
track_cfd: 光流跟踪图
"""
check_thres = 8
hgt, wdh = pre_gray.shape[:2]
h, w = pre_gray.shape[:2]
track_cfd = np.zeros_like(prev_cfd)
is_track = np.zeros_like(pre_gray)
# 计算前向光流
flow_fw = disflow.calc(pre_gray, cur_gray, None)
# 计算后向光流
flow_bw = disflow.calc(cur_gray, pre_gray, None)
get_round = lambda data: (int)(data + 0.5) if data >= 0 else (int)(data -
0.5)
for row in range(hgt):
for col in range(wdh):
# 计算光流处理后对应点坐标
# (row, col) -> (cur_x, cur_y)
fxy_fw = flow_fw[row, col]
for r in range(h):
for c in range(w):
fxy_fw = flow_fw[r, c]
dx_fw = get_round(fxy_fw[0])
cur_x = dx_fw + col
cur_x = dx_fw + c
dy_fw = get_round(fxy_fw[1])
cur_y = dy_fw + row
if cur_x < 0 or cur_x >= wdh or cur_y < 0 or cur_y >= hgt:
cur_y = dy_fw + r
if cur_x < 0 or cur_x >= w or cur_y < 0 or cur_y >= h:
continue
fxy_bw = flow_bw[cur_y, cur_x]
dx_bw = get_round(fxy_bw[0])
dy_bw = get_round(fxy_bw[1])
# 光流移动小于阈值
lmt = ((dy_fw + dy_bw) * (dy_fw + dy_bw) +
(dx_fw + dx_bw) * (dx_fw + dx_bw))
if lmt >= check_thres:
if ((dy_fw + dy_bw) * (dy_fw + dy_bw) +
(dx_fw + dx_bw) * (dx_fw + dx_bw)) >= check_thres:
continue
# 静止点降权
if abs(dy_fw) <= 0 and abs(dx_fw) <= 0 and abs(dy_bw) <= 0 and abs(
dx_bw) <= 0:
dl_weights[cur_y, cur_x] = 0.05
is_track[cur_y, cur_x] = 1
track_cfd[cur_y, cur_x] = prev_cfd[row, col]
track_cfd[cur_y, cur_x] = prev_cfd[r, c]
return track_cfd, is_track, dl_weights
def humanseg_track_fuse(track_cfd, dl_cfd, dl_weights, is_track):
def human_seg_track_fuse(track_cfd, dl_cfd, dl_weights, is_track):
"""光流追踪图和人像分割结构融合
输入参数:
track_cfd: 光流追踪图
dl_cfd: 当前帧分割结果
dl_weights: 融合权重图
is_track: 光流点匹配二值图
返回值:
返回
cur_cfd: 光流跟踪图和人像分割结果融合图
"""
cur_cfd = dl_cfd.copy()
fusion_cfd = dl_cfd.copy()
idxs = np.where(is_track > 0)
for i in range(len(idxs)):
for i in range(len(idxs[0])):
x, y = idxs[0][i], idxs[1][i]
dl_score = dl_cfd[x, y]
track_score = track_cfd[x, y]
fusion_cfd[x, y] = dl_weights[x, y] * dl_score + (
1 - dl_weights[x, y]) * track_score
if dl_score > 0.9 or dl_score < 0.1:
if dl_weights[x, y] < 0.1:
cur_cfd[x, y] = 0.3 * dl_score + 0.7 * track_score
fusion_cfd[x, y] = 0.3 * dl_score + 0.7 * track_score
else:
cur_cfd[x, y] = 0.4 * dl_score + 0.6 * track_score
fusion_cfd[x, y] = 0.4 * dl_score + 0.6 * track_score
else:
cur_cfd[x, y] = dl_weights[x, y] * dl_score + (
fusion_cfd[x, y] = dl_weights[x, y] * dl_score + (
1 - dl_weights[x, y]) * track_score
return cur_cfd
def threshold_mask(img, thresh_bg, thresh_fg):
"""设置背景和前景阈值mask
输入参数:
img : 原始图像, np.uint8 类型.
thresh_bg : 背景阈值百分比,低于该值置为0.
thresh_fg : 前景阈值百分比,超过该值置为1.
返回值:
dst : 原始图像设置完前景背景阈值mask结果, np.float32 类型.
"""
dst = (img / 255.0 - thresh_bg) / (thresh_fg - thresh_bg)
dst[np.where(dst > 1)] = 1
dst[np.where(dst < 0)] = 0
return dst.astype(np.float32)
return fusion_cfd
def optflow_handle(cur_gray, scoremap, is_init):
def postprocess(cur_gray, scoremap, prev_gray, pre_cfd, disflow, is_init):
"""光流优化
Args:
cur_gray : 当前帧灰度图
pre_gray : 前一帧灰度图
pre_cfd :前一帧融合结果
scoremap : 当前帧分割结果
difflow : 光流
is_init : 是否第一帧
Returns:
dst : 光流追踪图和预测结果融合图, 类型为 np.float32
fusion_cfd : 光流追踪图和预测结果融合图
"""
height, width = scoremap.shape[0], scoremap.shape[1]
disflow = cv2.DISOpticalFlow_create(cv2.DISOPTICAL_FLOW_PRESET_ULTRAFAST)
prev_gray = np.zeros((height, width), np.uint8)
prev_cfd = np.zeros((height, width), np.float32)
h, w = scoremap.shape
cur_cfd = scoremap.copy()
if is_init:
is_init = False
if height <= 64 or width <= 64:
if h <= 64 or w <= 64:
disflow.setFinestScale(1)
elif height <= 160 or width <= 160:
elif h <= 160 or w <= 160:
disflow.setFinestScale(2)
else:
disflow.setFinestScale(3)
fusion_cfd = cur_cfd
else:
weights = np.ones((height, width), np.float32) * 0.3
track_cfd, is_track, weights = humanseg_tracking(
prev_gray, cur_gray, prev_cfd, weights, disflow)
fusion_cfd = humanseg_track_fuse(track_cfd, cur_cfd, weights, is_track)
weights = np.ones((w, h), np.float32) * 0.3
track_cfd, is_track, weights = human_seg_tracking(
prev_gray, cur_gray, pre_cfd, weights, disflow)
fusion_cfd = human_seg_track_fuse(track_cfd, cur_cfd, weights, is_track)
fusion_cfd = cv2.GaussianBlur(fusion_cfd, (3, 3), 0)
return fusion_cfd
def postprocess(image, output_data):
"""对预测结果进行后处理
Args:
image: 原始图,opencv 图片对象
output_data: Paddle预测结果原始数据
Returns:
原图和预测结果融合并做了光流优化的结果图
"""
scoremap = output_data[:, :, 1]
scoremap = (scoremap * 255).astype(np.uint8)
# 光流处理
cur_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
optflow_map = optflow_handle(cur_gray, scoremap, False)
optflow_map = cv2.GaussianBlur(optflow_map, (3, 3), 0)
optflow_map = threshold_mask(optflow_map, thresh_bg=0.2, thresh_fg=0.8)
optflow_map = np.repeat(optflow_map[:, :, np.newaxis], 3, axis=2)
return optflow_map
def threshold_mask(img, thresh_bg, thresh_fg):
dst = (img / 255.0 - thresh_bg) / (thresh_fg - thresh_bg)
dst[np.where(dst > 1)] = 1
dst[np.where(dst < 0)] = 0
return dst.astype(np.float32)
......@@ -4,7 +4,7 @@ import os.path as osp
import cv2
import numpy as np
from utils.humanseg_postprocess import postprocess
from utils.humanseg_postprocess import postprocess, threshold_mask
import models
import transforms
......@@ -60,8 +60,12 @@ def recover(img, im_info):
def video_infer(args):
resize_h = 192
resize_w = 192
test_transforms = transforms.Compose(
[transforms.Resize((192, 192)),
[transforms.Resize((resize_w, resize_h)),
transforms.Normalize()])
model = models.load_model(args.model_dir)
if not args.video_path:
......@@ -73,10 +77,18 @@ def video_infer(args):
"--video_path whether existing: {}"
" or camera whether working".format(args.video_path))
return
if args.video_path:
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
disflow = cv2.DISOpticalFlow_create(cv2.DISOPTICAL_FLOW_PRESET_ULTRAFAST)
prev_gray = np.zeros((resize_h, resize_w), np.uint8)
prev_cfd = np.zeros((resize_h, resize_w), np.float32)
is_init = True
fps = cap.get(cv2.CAP_PROP_FPS)
if args.video_path:
# 用于保存预测结果视频
if not osp.exists(args.save_dir):
os.makedirs(args.save_dir)
......@@ -88,8 +100,18 @@ def video_infer(args):
ret, frame = cap.read()
if ret:
score_map, im_info = predict(frame, model, test_transforms)
img = cv2.resize(frame, (192, 192))
img_mat = postprocess(img, score_map)
cur_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
cur_gray = cv2.resize(cur_gray, (resize_w, resize_h))
scoremap = 255 * score_map[:, :, 1]
optflow_map = postprocess(cur_gray, scoremap, prev_gray, prev_cfd, \
disflow, is_init)
prev_gray = cur_gray.copy()
prev_cfd = optflow_map.copy()
is_init = False
optflow_map = cv2.GaussianBlur(optflow_map, (3, 3), 0)
optflow_map = threshold_mask(
optflow_map, thresh_bg=0.2, thresh_fg=0.8)
img_mat = np.repeat(optflow_map[:, :, np.newaxis], 3, axis=2)
img_mat = recover(img_mat, im_info)
bg_im = np.ones_like(img_mat) * 255
comb = (img_mat * frame + (1 - img_mat) * bg_im).astype(
......@@ -105,8 +127,19 @@ def video_infer(args):
ret, frame = cap.read()
if ret:
score_map, im_info = predict(frame, model, test_transforms)
img = cv2.resize(frame, (192, 192))
img_mat = postprocess(img, score_map)
cur_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
cur_gray = cv2.resize(cur_gray, (resize_w, resize_h))
scoremap = 255 * score_map[:, :, 1]
optflow_map = postprocess(cur_gray, scoremap, prev_gray, prev_cfd, \
disflow, is_init)
prev_gray = cur_gray.copy()
prev_cfd = optflow_map.copy()
is_init = False
# optflow_map = optflow_map/255.0
optflow_map = cv2.GaussianBlur(optflow_map, (3, 3), 0)
optflow_map = threshold_mask(
optflow_map, thresh_bg=0.2, thresh_fg=0.8)
img_mat = np.repeat(optflow_map[:, :, np.newaxis], 3, axis=2)
img_mat = recover(img_mat, im_info)
bg_im = np.ones_like(img_mat) * 255
comb = (img_mat * frame + (1 - img_mat) * bg_im).astype(
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册