diff --git a/dygraph/paddleseg/models/common/layer_libs.py b/dygraph/paddleseg/models/common/layer_libs.py index 8da38bcae5efb9960a012a58dac747136e81941a..dda619300e5f61ef4d75839246908d5b4ba9f006 100644 --- a/dygraph/paddleseg/models/common/layer_libs.py +++ b/dygraph/paddleseg/models/common/layer_libs.py @@ -21,10 +21,10 @@ from paddle.nn import SyncBatchNorm as BatchNorm from paddle.nn.layer import activation -class ConvBnRelu(nn.Layer): +class ConvBNRelu(nn.Layer): def __init__(self, in_channels, out_channels, kernel_size, **kwargs): - super(ConvBnRelu, self).__init__() + super(ConvBNRelu, self).__init__() self.conv = Conv2d(in_channels, out_channels, kernel_size, **kwargs) @@ -37,10 +37,10 @@ class ConvBnRelu(nn.Layer): return x -class ConvBn(nn.Layer): +class ConvBN(nn.Layer): def __init__(self, in_channels, out_channels, kernel_size, **kwargs): - super(ConvBn, self).__init__() + super(ConvBN, self).__init__() self.conv = Conv2d(in_channels, out_channels, kernel_size, **kwargs) @@ -70,16 +70,16 @@ class ConvReluPool(nn.Layer): return x -class DepthwiseConvBnRelu(nn.Layer): +class DepthwiseConvBNRelu(nn.Layer): def __init__(self, in_channels, out_channels, kernel_size, **kwargs): - super(DepthwiseConvBnRelu, self).__init__() - self.depthwise_conv = ConvBn( + super(DepthwiseConvBNRelu, self).__init__() + self.depthwise_conv = ConvBN( in_channels, out_channels=in_channels, kernel_size=kernel_size, groups=in_channels, **kwargs) - self.piontwise_conv = ConvBnRelu( + self.piontwise_conv = ConvBNRelu( in_channels, out_channels, kernel_size=1, groups=1) def forward(self, x): @@ -109,7 +109,7 @@ class AuxLayer(nn.Layer): dropout_prob=0.1): super(AuxLayer, self).__init__() - self.conv_bn_relu = ConvBnRelu( + self.conv_bn_relu = ConvBNRelu( in_channels=in_channels, out_channels=inter_channels, kernel_size=3, @@ -127,4 +127,3 @@ class AuxLayer(nn.Layer): x = F.dropout(x, p=self.dropout_prob) x = self.conv(x) return x -