Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSeg
提交
27919efd
P
PaddleSeg
项目概览
PaddlePaddle
/
PaddleSeg
通知
285
Star
8
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
3
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSeg
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
3
合并请求
3
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
27919efd
编写于
7月 17, 2020
作者:
W
wuzewu
提交者:
GitHub
7月 17, 2020
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #318 from wuyefeilin/dygraph
上级
ced3ee0e
0e58790c
变更
13
展开全部
显示空白变更内容
内联
并排
Showing
13 changed file
with
1345 addition
and
475 deletion
+1345
-475
dygraph/README.md
dygraph/README.md
+8
-23
dygraph/datasets/__init__.py
dygraph/datasets/__init__.py
+1
-0
dygraph/datasets/cityscapes.py
dygraph/datasets/cityscapes.py
+1
-15
dygraph/datasets/dataset.py
dygraph/datasets/dataset.py
+105
-0
dygraph/datasets/optic_disc_seg.py
dygraph/datasets/optic_disc_seg.py
+1
-15
dygraph/infer.py
dygraph/infer.py
+16
-11
dygraph/models/__init__.py
dygraph/models/__init__.py
+25
-0
dygraph/models/hrnet.py
dygraph/models/hrnet.py
+1063
-0
dygraph/models/unet.py
dygraph/models/unet.py
+7
-1
dygraph/train.py
dygraph/train.py
+12
-11
dygraph/transforms/transforms.py
dygraph/transforms/transforms.py
+68
-364
dygraph/utils/utils.py
dygraph/utils/utils.py
+5
-1
dygraph/val.py
dygraph/val.py
+33
-34
未找到文件。
dygraph/README.md
浏览文件 @
27919efd
# 动态图执行
## 数据集设置
```
data_dir='data/path'
train_list='train/list/path'
val_list='val/list/path'
test_list='test/list/path'
num_classes=number/of/dataset/classes
```
## 训练
```
python3 train.py --model_name UNet \
--data_dir $data_dir \
--train_list $train_list \
--val_list $val_list \
--num_classes $num_classes \
--dataset OpticDiscSeg \
--input_size 192 192 \
--num_epochs
4
\
--num_epochs
10
\
--save_interval_epochs 1 \
--do_eval \
--save_dir output
```
## 评估
```
python3 val.py --model_name UNet \
--data_dir $data_dir \
--val_list $val_list \
--num_classes $num_classes \
--dataset OpticDiscSeg \
--input_size 192 192 \
--model_dir output/
epoch_1
--model_dir output/
best_model
```
## 预测
```
python3 infer.py --model_name UNet \
--data_dir $data_dir \
--test_list $test_list \
--num_classes $num_classes \
--input_size 192 192 \
--model_dir output/epoch_1
--dataset OpticDiscSeg \
--model_dir output/best_model \
--input_size 192 192
```
dygraph/datasets/__init__.py
浏览文件 @
27919efd
...
...
@@ -12,5 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
.dataset
import
Dataset
from
.optic_disc_seg
import
OpticDiscSeg
from
.cityscapes
import
Cityscapes
dygraph/datasets/cityscapes.py
浏览文件 @
27919efd
...
...
@@ -14,8 +14,7 @@
import
os
from
paddle.fluid.io
import
Dataset
from
.dataset
import
Dataset
from
utils.download
import
download_file_and_uncompress
DATA_HOME
=
os
.
path
.
expanduser
(
'~/.cache/paddle/dataset'
)
...
...
@@ -70,16 +69,3 @@ class Cityscapes(Dataset):
image_path
=
os
.
path
.
join
(
self
.
data_dir
,
items
[
0
])
grt_path
=
os
.
path
.
join
(
self
.
data_dir
,
items
[
1
])
self
.
file_list
.
append
([
image_path
,
grt_path
])
def
__getitem__
(
self
,
idx
):
image_path
,
grt_path
=
self
.
file_list
[
idx
]
im
,
im_info
,
label
=
self
.
transforms
(
im
=
image_path
,
label
=
grt_path
)
if
self
.
mode
==
'train'
:
return
im
,
label
elif
self
.
mode
==
'eval'
:
return
im
,
label
if
self
.
mode
==
'test'
:
return
im
,
im_info
,
image_path
def
__len__
(
self
):
return
len
(
self
.
file_list
)
dygraph/datasets/dataset.py
0 → 100644
浏览文件 @
27919efd
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
paddle.fluid
as
fluid
import
numpy
as
np
from
PIL
import
Image
class
Dataset
(
fluid
.
io
.
Dataset
):
def
__init__
(
self
,
data_dir
,
num_classes
,
train_list
=
None
,
val_list
=
None
,
test_list
=
None
,
separator
=
' '
,
transforms
=
None
,
mode
=
'train'
):
self
.
data_dir
=
data_dir
self
.
transforms
=
transforms
self
.
file_list
=
list
()
self
.
mode
=
mode
self
.
num_classes
=
num_classes
if
mode
.
lower
()
not
in
[
'train'
,
'eval'
,
'test'
]:
raise
Exception
(
"mode should be 'train', 'eval' or 'test', but got {}."
.
format
(
mode
))
if
self
.
transforms
is
None
:
raise
Exception
(
"transform is necessary, but it is None."
)
self
.
data_dir
=
data_dir
if
mode
==
'train'
:
if
train_list
is
None
:
raise
Exception
(
'When mode is "train", train_list is need, but it is None.'
)
elif
not
os
.
path
.
exists
(
train_list
):
raise
Exception
(
'train_list is not found: {}'
.
format
(
train_list
))
else
:
file_list
=
train_list
elif
mode
==
'eval'
:
if
val_list
is
None
:
raise
Exception
(
'When mode is "eval", val_list is need, but it is None.'
)
elif
not
os
.
path
.
exists
(
val_list
):
raise
Exception
(
'val_list is not found: {}'
.
format
(
val_list
))
else
:
file_list
=
val_list
else
:
if
test_list
is
None
:
raise
Exception
(
'When mode is "test", test_list is need, but it is None.'
)
elif
not
os
.
path
.
exists
(
test_list
):
raise
Exception
(
'test_list is not found: {}'
.
format
(
test_list
))
else
:
file_list
=
test_list
with
open
(
file_list
,
'r'
)
as
f
:
for
line
in
f
:
items
=
line
.
strip
().
split
(
separator
)
if
len
(
items
)
!=
2
:
if
mode
==
'train'
or
mode
==
'eval'
:
raise
Exception
(
"File list format incorrect! It should be"
" image_name{}label_name
\\
n"
.
format
(
separator
))
image_path
=
os
.
path
.
join
(
self
.
data_dir
,
items
[
0
])
grt_path
=
None
else
:
image_path
=
os
.
path
.
join
(
self
.
data_dir
,
items
[
0
])
grt_path
=
os
.
path
.
join
(
self
.
data_dir
,
items
[
1
])
self
.
file_list
.
append
([
image_path
,
grt_path
])
def
__getitem__
(
self
,
idx
):
image_path
,
grt_path
=
self
.
file_list
[
idx
]
if
self
.
mode
==
'train'
:
im
,
im_info
,
label
=
self
.
transforms
(
im
=
image_path
,
label
=
grt_path
)
return
im
,
label
elif
self
.
mode
==
'eval'
:
im
,
im_info
,
_
=
self
.
transforms
(
im
=
image_path
)
im
=
im
[
np
.
newaxis
,
...]
label
=
np
.
asarray
(
Image
.
open
(
grt_path
))
label
=
label
[
np
.
newaxis
,
np
.
newaxis
,
:,
:]
return
im
,
im_info
,
label
if
self
.
mode
==
'test'
:
im
,
im_info
,
_
=
self
.
transforms
(
im
=
image_path
)
im
=
im
[
np
.
newaxis
,
...]
return
im
,
im_info
,
image_path
def
__len__
(
self
):
return
len
(
self
.
file_list
)
dygraph/datasets/optic_disc_seg.py
浏览文件 @
27919efd
...
...
@@ -14,8 +14,7 @@
import
os
from
paddle.fluid.io
import
Dataset
from
.dataset
import
Dataset
from
utils.download
import
download_file_and_uncompress
DATA_HOME
=
os
.
path
.
expanduser
(
'~/.cache/paddle/dataset'
)
...
...
@@ -70,16 +69,3 @@ class OpticDiscSeg(Dataset):
image_path
=
os
.
path
.
join
(
self
.
data_dir
,
items
[
0
])
grt_path
=
os
.
path
.
join
(
self
.
data_dir
,
items
[
1
])
self
.
file_list
.
append
([
image_path
,
grt_path
])
def
__getitem__
(
self
,
idx
):
image_path
,
grt_path
=
self
.
file_list
[
idx
]
im
,
im_info
,
label
=
self
.
transforms
(
im
=
image_path
,
label
=
grt_path
)
if
self
.
mode
==
'train'
:
return
im
,
label
elif
self
.
mode
==
'eval'
:
return
im
,
label
if
self
.
mode
==
'test'
:
return
im
,
im_info
,
image_path
def
__len__
(
self
):
return
len
(
self
.
file_list
)
dygraph/infer.py
浏览文件 @
27919efd
...
...
@@ -24,7 +24,7 @@ import tqdm
from
datasets
import
OpticDiscSeg
,
Cityscapes
import
transforms
as
T
import
models
from
models
import
MODELS
import
utils
import
utils.logging
as
logging
from
utils
import
get_environ_info
...
...
@@ -37,7 +37,8 @@ def parse_args():
parser
.
add_argument
(
'--model_name'
,
dest
=
'model_name'
,
help
=
"Model type for traing, which is one of ('UNet')"
,
help
=
'Model type for testing, which is one of {}'
.
format
(
str
(
list
(
MODELS
.
keys
()))),
type
=
str
,
default
=
'UNet'
)
...
...
@@ -97,19 +98,20 @@ def infer(model, test_dataset=None, model_dir=None, save_dir='output'):
logging
.
info
(
"Start to predict..."
)
for
im
,
im_info
,
im_path
in
tqdm
.
tqdm
(
test_dataset
):
im
=
im
[
np
.
newaxis
,
...]
im
=
to_variable
(
im
)
pred
,
_
=
model
(
im
,
mode
=
'test'
)
pred
=
pred
.
numpy
()
pred
=
np
.
squeeze
(
pred
).
astype
(
'uint8'
)
keys
=
list
(
im_info
.
keys
())
for
k
in
keys
[::
-
1
]:
if
k
==
'shape_before_resize'
:
h
,
w
=
im_info
[
k
][
0
],
im_info
[
k
][
1
]
for
info
in
im_info
[::
-
1
]:
if
info
[
0
]
==
'resize'
:
h
,
w
=
info
[
1
][
0
],
info
[
1
][
1
]
pred
=
cv2
.
resize
(
pred
,
(
w
,
h
),
cv2
.
INTER_NEAREST
)
elif
k
==
'shape_before_
padding'
:
h
,
w
=
i
m_info
[
k
][
0
],
im_info
[
k
][
1
]
elif
info
[
0
]
==
'
padding'
:
h
,
w
=
i
nfo
[
1
][
0
],
info
[
1
][
1
]
pred
=
pred
[
0
:
h
,
0
:
w
]
else
:
raise
Exception
(
"Unexpected info '{}' in im_info"
.
format
(
info
[
0
]))
im_file
=
im_path
.
replace
(
test_dataset
.
data_dir
,
''
)
if
im_file
[
0
]
==
'/'
:
...
...
@@ -146,8 +148,11 @@ def main(args):
test_transforms
=
T
.
Compose
([
T
.
Resize
(
args
.
input_size
),
T
.
Normalize
()])
test_dataset
=
dataset
(
transforms
=
test_transforms
,
mode
=
'test'
)
if
args
.
model_name
==
'UNet'
:
model
=
models
.
UNet
(
num_classes
=
test_dataset
.
num_classes
)
if
args
.
model_name
not
in
MODELS
:
raise
Exception
(
'--model_name is invalid. it should be one of {}'
.
format
(
str
(
list
(
MODELS
.
keys
()))))
model
=
MODELS
[
args
.
model_name
](
num_classes
=
test_dataset
.
num_classes
)
infer
(
model
,
...
...
dygraph/models/__init__.py
浏览文件 @
27919efd
...
...
@@ -13,3 +13,28 @@
# limitations under the License.
from
.unet
import
UNet
from
.hrnet
import
*
MODELS
=
{
"UNet"
:
UNet
,
"HRNet_W18_Small_V1"
:
HRNet_W18_Small_V1
,
"HRNet_W18_Small_V2"
:
HRNet_W18_Small_V2
,
"HRNet_W18"
:
HRNet_W18
,
"HRNet_W30"
:
HRNet_W30
,
"HRNet_W32"
:
HRNet_W32
,
"HRNet_W40"
:
HRNet_W40
,
"HRNet_W44"
:
HRNet_W44
,
"HRNet_W48"
:
HRNet_W48
,
"HRNet_W60"
:
HRNet_W48
,
"HRNet_W64"
:
HRNet_W64
,
"SE_HRNet_W18_Small_V1"
:
SE_HRNet_W18_Small_V1
,
"SE_HRNet_W18_Small_V2"
:
SE_HRNet_W18_Small_V2
,
"SE_HRNet_W18"
:
SE_HRNet_W18
,
"SE_HRNet_W30"
:
SE_HRNet_W30
,
"SE_HRNet_W32"
:
SE_HRNet_W30
,
"SE_HRNet_W40"
:
SE_HRNet_W40
,
"SE_HRNet_W44"
:
SE_HRNet_W44
,
"SE_HRNet_W48"
:
SE_HRNet_W48
,
"SE_HRNet_W60"
:
SE_HRNet_W60
,
"SE_HRNet_W64"
:
SE_HRNet_W64
}
dygraph/models/hrnet.py
0 → 100644
浏览文件 @
27919efd
此差异已折叠。
点击以展开。
dygraph/models/unet.py
浏览文件 @
27919efd
...
...
@@ -13,7 +13,11 @@
# limitations under the License.
import
paddle.fluid
as
fluid
from
paddle.fluid.dygraph
import
Conv2D
,
BatchNorm
,
Pool2D
from
paddle.fluid.dygraph
import
Conv2D
,
Pool2D
try
:
from
paddle.fluid.dygraph
import
SyncBatchNorm
as
BatchNorm
except
:
from
paddle.fluid.dygraph
import
BatchNorm
class
UNet
(
fluid
.
dygraph
.
Layer
):
...
...
@@ -39,6 +43,8 @@ class UNet(fluid.dygraph.Layer):
return
pred
,
score_map
def
_get_loss
(
self
,
logit
,
label
):
logit
=
fluid
.
layers
.
transpose
(
logit
,
[
0
,
2
,
3
,
1
])
label
=
fluid
.
layers
.
transpose
(
label
,
[
0
,
2
,
3
,
1
])
mask
=
label
!=
self
.
ignore_index
mask
=
fluid
.
layers
.
cast
(
mask
,
'float32'
)
loss
,
probs
=
fluid
.
layers
.
softmax_with_cross_entropy
(
...
...
dygraph/train.py
浏览文件 @
27919efd
...
...
@@ -22,7 +22,7 @@ from paddle.incubate.hapi.distributed import DistributedBatchSampler
from
datasets
import
OpticDiscSeg
,
Cityscapes
import
transforms
as
T
import
models
from
models
import
MODELS
import
utils.logging
as
logging
from
utils
import
get_environ_info
from
utils
import
load_pretrained_model
...
...
@@ -38,7 +38,8 @@ def parse_args():
parser
.
add_argument
(
'--model_name'
,
dest
=
'model_name'
,
help
=
"Model type for traing, which is one of ('UNet')"
,
help
=
'Model type for training, which is one of {}'
.
format
(
str
(
list
(
MODELS
.
keys
()))),
type
=
str
,
default
=
'UNet'
)
...
...
@@ -181,7 +182,7 @@ def train(model,
total_steps
=
steps_per_epoch
*
(
num_epochs
-
start_epoch
)
num_steps
=
0
best_mean_iou
=
-
1.0
best_model_epoch
=
1
best_model_epoch
=
-
1
for
epoch
in
range
(
start_epoch
,
num_epochs
):
for
step
,
data
in
enumerate
(
loader
):
images
=
data
[
0
]
...
...
@@ -229,10 +230,8 @@ def train(model,
mean_iou
,
mean_acc
=
evaluate
(
model
,
eval_dataset
,
places
=
places
,
model_dir
=
current_save_dir
,
num_classes
=
num_classes
,
batch_size
=
batch_size
,
ignore_index
=
ignore_index
,
epoch_id
=
epoch
+
1
)
if
mean_iou
>
best_mean_iou
:
...
...
@@ -286,9 +285,11 @@ def main(args):
T
.
Normalize
()])
eval_dataset
=
dataset
(
transforms
=
eval_transforms
,
mode
=
'eval'
)
if
args
.
model_name
==
'UNet'
:
model
=
models
.
UNet
(
num_classes
=
train_dataset
.
num_classes
,
ignore_index
=
255
)
if
args
.
model_name
not
in
MODELS
:
raise
Exception
(
'--model_name is invalid. it should be one of {}'
.
format
(
str
(
list
(
MODELS
.
keys
()))))
model
=
MODELS
[
args
.
model_name
](
num_classes
=
train_dataset
.
num_classes
)
# Creat optimizer
# todo, may less one than len(loader)
...
...
dygraph/transforms/transforms.py
浏览文件 @
27919efd
此差异已折叠。
点击以展开。
dygraph/utils/utils.py
浏览文件 @
27919efd
...
...
@@ -52,7 +52,11 @@ def load_pretrained_model(model, pretrained_model):
logging
.
info
(
'Load pretrained model from {}'
.
format
(
pretrained_model
))
if
os
.
path
.
exists
(
pretrained_model
):
ckpt_path
=
os
.
path
.
join
(
pretrained_model
,
'model'
)
try
:
para_state_dict
,
_
=
fluid
.
load_dygraph
(
ckpt_path
)
except
:
para_state_dict
=
fluid
.
load_program_state
(
pretrained_model
)
model_state_dict
=
model
.
state_dict
()
keys
=
model_state_dict
.
keys
()
num_params_loaded
=
0
...
...
dygraph/val.py
浏览文件 @
27919efd
...
...
@@ -16,8 +16,10 @@ import argparse
import
os
import
math
from
paddle.fluid.dygraph.base
import
to_variable
import
numpy
as
np
import
tqdm
import
cv2
from
paddle.fluid.dygraph.base
import
to_variable
import
paddle.fluid
as
fluid
from
paddle.fluid.dygraph.parallel
import
ParallelEnv
from
paddle.fluid.io
import
DataLoader
...
...
@@ -25,7 +27,7 @@ from paddle.fluid.dataloader import BatchSampler
from
datasets
import
OpticDiscSeg
,
Cityscapes
import
transforms
as
T
import
models
from
models
import
MODELS
import
utils.logging
as
logging
from
utils
import
get_environ_info
from
utils
import
ConfusionMatrix
...
...
@@ -39,7 +41,8 @@ def parse_args():
parser
.
add_argument
(
'--model_name'
,
dest
=
'model_name'
,
help
=
"Model type for evaluation, which is one of ('UNet')"
,
help
=
'Model type for evaluation, which is one of {}'
.
format
(
str
(
list
(
MODELS
.
keys
()))),
type
=
str
,
default
=
'UNet'
)
...
...
@@ -60,12 +63,6 @@ def parse_args():
nargs
=
2
,
default
=
[
512
,
512
],
type
=
int
)
parser
.
add_argument
(
'--batch_size'
,
dest
=
'batch_size'
,
help
=
'Mini batch size'
,
type
=
int
,
default
=
2
)
parser
.
add_argument
(
'--model_dir'
,
dest
=
'model_dir'
,
...
...
@@ -78,10 +75,8 @@ def parse_args():
def
evaluate
(
model
,
eval_dataset
=
None
,
places
=
None
,
model_dir
=
None
,
num_classes
=
None
,
batch_size
=
2
,
ignore_index
=
255
,
epoch_id
=
None
):
ckpt_path
=
os
.
path
.
join
(
model_dir
,
'model'
)
...
...
@@ -89,15 +84,7 @@ def evaluate(model,
model
.
set_dict
(
para_state_dict
)
model
.
eval
()
batch_sampler
=
BatchSampler
(
eval_dataset
,
batch_size
=
batch_size
,
shuffle
=
False
,
drop_last
=
False
)
loader
=
DataLoader
(
eval_dataset
,
batch_sampler
=
batch_sampler
,
places
=
places
,
return_list
=
True
,
)
total_steps
=
len
(
batch_sampler
)
total_steps
=
len
(
eval_dataset
)
conf_mat
=
ConfusionMatrix
(
num_classes
,
streaming
=
True
)
logging
.
info
(
...
...
@@ -105,15 +92,26 @@ def evaluate(model,
len
(
eval_dataset
),
total_steps
))
timer
=
Timer
()
timer
.
start
()
for
step
,
data
in
enumerate
(
loader
):
images
=
data
[
0
]
labels
=
data
[
1
].
astype
(
'int64'
)
pred
,
_
=
model
(
images
,
mode
=
'eval'
)
pred
=
pred
.
numpy
()
labels
=
labels
.
numpy
()
mask
=
labels
!=
ignore_index
conf_mat
.
calculate
(
pred
=
pred
,
label
=
labels
,
ignore
=
mask
)
for
step
,
(
im
,
im_info
,
label
)
in
enumerate
(
eval_dataset
):
im
=
to_variable
(
im
)
pred
,
_
=
model
(
im
,
mode
=
'eval'
)
pred
=
pred
.
numpy
().
astype
(
'float32'
)
pred
=
np
.
squeeze
(
pred
)
for
info
in
im_info
[::
-
1
]:
if
info
[
0
]
==
'resize'
:
h
,
w
=
info
[
1
][
0
],
info
[
1
][
1
]
pred
=
cv2
.
resize
(
pred
,
(
w
,
h
),
cv2
.
INTER_NEAREST
)
elif
info
[
0
]
==
'padding'
:
h
,
w
=
info
[
1
][
0
],
info
[
1
][
1
]
pred
=
pred
[
0
:
h
,
0
:
w
]
else
:
raise
Exception
(
"Unexpected info '{}' in im_info"
.
format
(
info
[
0
]))
pred
=
pred
[
np
.
newaxis
,
:,
:,
np
.
newaxis
]
pred
=
pred
.
astype
(
'int64'
)
mask
=
label
!=
ignore_index
conf_mat
.
calculate
(
pred
=
pred
,
label
=
label
,
ignore
=
mask
)
_
,
iou
=
conf_mat
.
mean_iou
()
time_step
=
timer
.
elapsed_time
()
...
...
@@ -153,16 +151,17 @@ def main(args):
eval_transforms
=
T
.
Compose
([
T
.
Resize
(
args
.
input_size
),
T
.
Normalize
()])
eval_dataset
=
dataset
(
transforms
=
eval_transforms
,
mode
=
'eval'
)
if
args
.
model_name
==
'UNet'
:
model
=
models
.
UNet
(
num_classes
=
eval_dataset
.
num_classes
)
if
args
.
model_name
not
in
MODELS
:
raise
Exception
(
'--model_name is invalid. it should be one of {}'
.
format
(
str
(
list
(
MODELS
.
keys
()))))
model
=
MODELS
[
args
.
model_name
](
num_classes
=
eval_dataset
.
num_classes
)
evaluate
(
model
,
eval_dataset
,
places
=
places
,
model_dir
=
args
.
model_dir
,
num_classes
=
eval_dataset
.
num_classes
,
batch_size
=
args
.
batch_size
)
num_classes
=
eval_dataset
.
num_classes
)
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录