diff --git a/configs/unet_pet.yaml b/configs/unet_pet.yaml index 2f3cc50e7e99ea7b8ff749d57f8319aa6b212a6f..a1781c5e8c4963ac269c4850f1012cc3d9ad8d15 100644 --- a/configs/unet_pet.yaml +++ b/configs/unet_pet.yaml @@ -30,13 +30,13 @@ MODEL: MODEL_NAME: "unet" DEFAULT_NORM_TYPE: "bn" TEST: - TEST_MODEL: "./test/saved_model/unet_pet/final/" + TEST_MODEL: "./saved_model/unet_pet/final/" TRAIN: - MODEL_SAVE_DIR: "./test/saved_models/unet_pet/" - PRETRAINED_MODEL_DIR: "./test/models/unet_coco/" + MODEL_SAVE_DIR: "./saved_model/unet_pet/" + PRETRAINED_MODEL_DIR: "./pretrained_model/unet_bn_coco/" SNAPSHOT_EPOCH: 10 SOLVER: - NUM_EPOCHS: 500 + NUM_EPOCHS: 100 LR: 0.005 LR_POLICY: "poly" OPTIMIZER: "adam" diff --git a/test/configs/deeplabv3p_xception65_cityscapes.yaml b/test/configs/deeplabv3p_xception65_cityscapes.yaml index 349646f743f10c7970b248b30c258574c8478c68..111452fb3e240409cfc18cc684a03f71746589c7 100644 --- a/test/configs/deeplabv3p_xception65_cityscapes.yaml +++ b/test/configs/deeplabv3p_xception65_cityscapes.yaml @@ -31,10 +31,10 @@ MODEL: ASPP_WITH_SEP_CONV: True DECODER_USE_SEP_CONV: True TEST: - TEST_MODEL: "snapshots/cityscape_v5/final/" + TEST_MODEL: "./saved_model/cityscape_v5/final/" TRAIN: - MODEL_SAVE_DIR: "snapshots/cityscape_v5/" - PRETRAINED_MODEL_DIR: "pretrain/deeplabv3plus_gn_init" + MODEL_SAVE_DIR: "./saved_model/cityscape_v5/" + PRETRAINED_MODEL_DIR: "pretrained_model/deeplabv3plus_gn_init" SNAPSHOT_EPOCH: 10 SOLVER: LR: 0.001 diff --git a/test/configs/unet_pet.yaml b/test/configs/unet_pet.yaml index c81d28513fd84198c85b479107c355a890e96e92..b39b9386d55847f393a9826f147eb41066f42c4f 100644 --- a/test/configs/unet_pet.yaml +++ b/test/configs/unet_pet.yaml @@ -12,15 +12,15 @@ AUG: MIN_SCALE_FACTOR: 0.75 # for stepscaling SCALE_STEP_SIZE: 0.25 # for stepscaling MIRROR: True -BATCH_SIZE: 6 +BATCH_SIZE: 4 DATASET: DATA_DIR: "./dataset/mini_pet/" IMAGE_TYPE: "rgb" # choice rgb or rgba - NUM_CLASSES: 4 # including ignore + NUM_CLASSES: 3 TEST_FILE_LIST: "./dataset/mini_pet/file_list/test_list.txt" TRAIN_FILE_LIST: "./dataset/mini_pet/file_list/train_list.txt" VAL_FILE_LIST: "./dataset/mini_pet/file_list/val_list.txt" - VIS_FILE_LIST: "./dataset/mini_pet/file_list/val_list.txt" + VIS_FILE_LIST: "./dataset/mini_pet/file_list/test_list.txt" IGNORE_INDEX: 255 SEPARATOR: " " FREEZE: @@ -30,13 +30,13 @@ MODEL: MODEL_NAME: "unet" DEFAULT_NORM_TYPE: "bn" TEST: - TEST_MODEL: "./test/saved_model/unet_pet/final/" + TEST_MODEL: "./saved_model/unet_pet/final/" TRAIN: - MODEL_SAVE_DIR: "./test/saved_model/unet_pet/" - PRETRAINED_MODEL_DIR: "./test/models/unet_coco/" + MODEL_SAVE_DIR: "./saved_model/unet_pet/" + PRETRAINED_MODEL_DIR: "./test/models/unet_coco_init/" SNAPSHOT_EPOCH: 10 SOLVER: - NUM_EPOCHS: 500 + NUM_EPOCHS: 100 LR: 0.005 LR_POLICY: "poly" OPTIMIZER: "adam"