unet.py 6.4 KB
Newer Older
C
chenguowei01 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
C
chenguowei01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

C
chenguowei01 已提交
15 16
import os

C
chenguowei01 已提交
17
import paddle.fluid as fluid
R
root 已提交
18
from paddle.fluid.dygraph import Conv2D, Pool2D
C
chenguowei01 已提交
19 20 21 22
from paddle.nn import SyncBatchNorm as BatchNorm

from dygraph.cvlibs import manager
from dygraph import utils
C
chenguowei01 已提交
23

C
chenguowei01 已提交
24 25

class UNet(fluid.dygraph.Layer):
C
chenguowei01 已提交
26 27 28 29 30 31 32 33 34 35
    """
    U-Net: Convolutional Networks for Biomedical Image Segmentation.
    https://arxiv.org/abs/1505.04597

    Args:
        num_classes (int): the unique number of target classes.
        pretrained_model (str): the path of pretrained model.
        ignore_index (int): the value of ground-truth mask would be ignored while computing loss or doing evaluation. Default 255.
    """

C
chenguowei01 已提交
36
    def __init__(self, num_classes, model_pretrained=None, ignore_index=255):
C
chenguowei01 已提交
37
        super(UNet, self).__init__()
C
update  
chenguowei01 已提交
38 39
        self.encode = UnetEncoder()
        self.decode = UnetDecode()
C
chenguowei01 已提交
40 41
        self.get_logit = GetLogit(64, num_classes)
        self.ignore_index = ignore_index
C
chenguowei01 已提交
42
        self.EPS = 1e-5
C
chenguowei01 已提交
43

C
chenguowei01 已提交
44
        self.init_weight(model_pretrained)
C
chenguowei01 已提交
45

C
chenguowei01 已提交
46
    def forward(self, x, label=None):
C
chenguowei01 已提交
47 48 49
        encode_data, short_cuts = self.encode(x)
        decode_data = self.decode(encode_data, short_cuts)
        logit = self.get_logit(decode_data)
C
chenguowei01 已提交
50
        if self.training:
C
chenguowei01 已提交
51
            return self._get_loss(logit, label)
C
chenguowei01 已提交
52
        else:
C
chenguowei01 已提交
53 54 55
            score_map = fluid.layers.softmax(logit, axis=1)
            score_map = fluid.layers.transpose(score_map, [0, 2, 3, 1])
            pred = fluid.layers.argmax(score_map, axis=3)
C
chenguowei01 已提交
56
            pred = fluid.layers.unsqueeze(pred, axes=[3])
C
chenguowei01 已提交
57
            return pred, score_map
C
chenguowei01 已提交
58

C
chenguowei01 已提交
59 60 61 62
    def init_weight(self, pretrained_model=None):
        """
        Initialize the parameters of model parts.
        Args:
C
chenguowei01 已提交
63
            pretrained_model ([str], optional): the path of pretrained model. Defaults to None.
C
chenguowei01 已提交
64 65 66 67 68 69 70 71
        """
        if pretrained_model is not None:
            if os.path.exists(pretrained_model):
                utils.load_pretrained_model(self, pretrained_model)
            else:
                raise Exception('Pretrained model is not found: {}'.format(
                    pretrained_model))

C
chenguowei01 已提交
72
    def _get_loss(self, logit, label):
73 74
        logit = fluid.layers.transpose(logit, [0, 2, 3, 1])
        label = fluid.layers.transpose(label, [0, 2, 3, 1])
C
chenguowei01 已提交
75 76 77 78 79 80 81
        mask = label != self.ignore_index
        mask = fluid.layers.cast(mask, 'float32')
        loss, probs = fluid.layers.softmax_with_cross_entropy(
            logit,
            label,
            ignore_index=self.ignore_index,
            return_softmax=True,
C
chenguowei01 已提交
82
            axis=-1)
C
chenguowei01 已提交
83 84

        loss = loss * mask
C
chenguowei01 已提交
85 86
        avg_loss = fluid.layers.mean(loss) / (
            fluid.layers.mean(mask) + self.EPS)
C
chenguowei01 已提交
87 88 89 90 91

        label.stop_gradient = True
        mask.stop_gradient = True
        return avg_loss

C
chenguowei01 已提交
92

C
update  
chenguowei01 已提交
93
class UnetEncoder(fluid.dygraph.Layer):
C
chenguowei01 已提交
94
    def __init__(self):
C
chenguowei01 已提交
95
        super(UnetEncoder, self).__init__()
C
chenguowei01 已提交
96 97 98 99 100
        self.double_conv = DoubleConv(3, 64)
        self.down1 = Down(64, 128)
        self.down2 = Down(128, 256)
        self.down3 = Down(256, 512)
        self.down4 = Down(512, 512)
C
chenguowei01 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115

    def forward(self, x):
        short_cuts = []
        x = self.double_conv(x)
        short_cuts.append(x)
        x = self.down1(x)
        short_cuts.append(x)
        x = self.down2(x)
        short_cuts.append(x)
        x = self.down3(x)
        short_cuts.append(x)
        x = self.down4(x)
        return x, short_cuts


C
update  
chenguowei01 已提交
116
class UnetDecode(fluid.dygraph.Layer):
C
chenguowei01 已提交
117
    def __init__(self):
C
chenguowei01 已提交
118
        super(UnetDecode, self).__init__()
C
chenguowei01 已提交
119 120 121 122
        self.up1 = Up(512, 256)
        self.up2 = Up(256, 128)
        self.up3 = Up(128, 64)
        self.up4 = Up(64, 64)
C
chenguowei01 已提交
123 124 125 126 127 128 129 130 131 132 133

    def forward(self, x, short_cuts):
        x = self.up1(x, short_cuts[3])
        x = self.up2(x, short_cuts[2])
        x = self.up3(x, short_cuts[1])
        x = self.up4(x, short_cuts[0])
        return x


class DoubleConv(fluid.dygraph.Layer):
    def __init__(self, num_channels, num_filters):
C
chenguowei01 已提交
134
        super(DoubleConv, self).__init__()
C
chenguowei01 已提交
135 136 137 138 139 140
        self.conv0 = Conv2D(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=3,
            stride=1,
            padding=1)
C
chenguowei01 已提交
141
        self.bn0 = BatchNorm(num_filters)
C
chenguowei01 已提交
142 143 144 145 146 147
        self.conv1 = Conv2D(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            stride=1,
            padding=1)
C
chenguowei01 已提交
148
        self.bn1 = BatchNorm(num_filters)
C
chenguowei01 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161

    def forward(self, x):
        x = self.conv0(x)
        x = self.bn0(x)
        x = fluid.layers.relu(x)
        x = self.conv1(x)
        x = self.bn1(x)
        x = fluid.layers.relu(x)
        return x


class Down(fluid.dygraph.Layer):
    def __init__(self, num_channels, num_filters):
C
chenguowei01 已提交
162
        super(Down, self).__init__()
C
chenguowei01 已提交
163 164 165
        self.max_pool = Pool2D(
            pool_size=2, pool_type='max', pool_stride=2, pool_padding=0)
        self.double_conv = DoubleConv(num_channels, num_filters)
C
chenguowei01 已提交
166 167 168 169 170 171 172 173

    def forward(self, x):
        x = self.max_pool(x)
        x = self.double_conv(x)
        return x


class Up(fluid.dygraph.Layer):
C
chenguowei01 已提交
174
    def __init__(self, num_channels, num_filters):
C
chenguowei01 已提交
175
        super(Up, self).__init__()
C
chenguowei01 已提交
176
        self.double_conv = DoubleConv(2 * num_channels, num_filters)
C
chenguowei01 已提交
177 178

    def forward(self, x, short_cut):
C
chenguowei01 已提交
179 180
        short_cut_shape = fluid.layers.shape(short_cut)
        x = fluid.layers.resize_bilinear(x, short_cut_shape[2:])
C
chenguowei01 已提交
181 182 183 184 185 186 187
        x = fluid.layers.concat([x, short_cut], axis=1)
        x = self.double_conv(x)
        return x


class GetLogit(fluid.dygraph.Layer):
    def __init__(self, num_channels, num_classes):
C
chenguowei01 已提交
188
        super(GetLogit, self).__init__()
C
chenguowei01 已提交
189 190 191 192 193 194
        self.conv = Conv2D(
            num_channels=num_channels,
            num_filters=num_classes,
            filter_size=3,
            stride=1,
            padding=1)
C
chenguowei01 已提交
195 196 197 198

    def forward(self, x):
        x = self.conv(x)
        return x
C
chenguowei01 已提交
199 200 201 202 203


@manager.MODELS.add_component
def unet(*args, **kwargs):
    return UNet(*args, **kwargs)