deeplab.py 12.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os

M
michaelowenliu 已提交
17 18
from dygraph.cvlibs import manager
from dygraph.models.architectures import layer_utils
19 20 21 22 23
from paddle import fluid
from paddle.fluid import dygraph
from paddle.fluid.dygraph import Conv2D

from dygraph.utils import utils
24

C
chenguowei01 已提交
25 26 27 28 29 30
__all__ = [
    'DeepLabV3P', "deeplabv3p_resnet101_vd", "deeplabv3p_resnet101_vd_os8",
    "deeplabv3p_resnet50_vd", "deeplabv3p_resnet50_vd_os8",
    "deeplabv3p_xception65_deeplab", "deeplabv3p_mobilenetv3_large",
    "deeplabv3p_mobilenetv3_small"
]
31 32 33 34 35 36 37 38 39 40 41 42 43


class ImageAverage(dygraph.Layer):
    """
    Global average pooling

    Args:
        num_channels (int): the number of input channels.

    """

    def __init__(self, num_channels):
        super(ImageAverage, self).__init__()
C
chenguowei01 已提交
44 45
        self.conv_bn_relu = layer_utils.ConvBnRelu(
            num_channels, num_filters=256, filter_size=1)
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

    def forward(self, input):
        x = fluid.layers.reduce_mean(input, dim=[2, 3], keep_dim=True)
        x = self.conv_bn_relu(x)
        x = fluid.layers.resize_bilinear(x, out_shape=input.shape[2:])
        return x


class ASPP(dygraph.Layer):
    """
     Decoder module of DeepLabV3P model

    Args:
        output_stride (int): the ratio of input size and final feature size. Support 16 or 8.
        in_channels (int): the number of input channels in decoder module.
        using_sep_conv (bool): whether use separable conv or not. Default to True.
    """

    def __init__(self, output_stride, in_channels, using_sep_conv=True):
        super(ASPP, self).__init__()

        if output_stride == 16:
            aspp_ratios = (6, 12, 18)
        elif output_stride == 8:
            aspp_ratios = (12, 24, 36)
        else:
C
chenguowei01 已提交
72 73 74
            raise NotImplementedError(
                "Only support output_stride is 8 or 16, but received{}".format(
                    output_stride))
75 76 77 78

        self.image_average = ImageAverage(num_channels=in_channels)

        # The first aspp using 1*1 conv
C
chenguowei01 已提交
79 80 81 82 83
        self.aspp1 = layer_utils.ConvBnRelu(
            num_channels=in_channels,
            num_filters=256,
            filter_size=1,
            using_sep_conv=False)
84

85
        # The second aspp using 3*3 (separable) conv at dilated rate aspp_ratios[0]
C
chenguowei01 已提交
86 87 88 89 90 91 92
        self.aspp2 = layer_utils.ConvBnRelu(
            num_channels=in_channels,
            num_filters=256,
            filter_size=3,
            using_sep_conv=using_sep_conv,
            dilation=aspp_ratios[0],
            padding=aspp_ratios[0])
93

94
        # The Third aspp using 3*3 (separable) conv at dilated rate aspp_ratios[1]
C
chenguowei01 已提交
95 96 97 98 99 100 101
        self.aspp3 = layer_utils.ConvBnRelu(
            num_channels=in_channels,
            num_filters=256,
            filter_size=3,
            using_sep_conv=using_sep_conv,
            dilation=aspp_ratios[1],
            padding=aspp_ratios[1])
102 103

        # The Third aspp using 3*3 (separable) conv at dilated rate aspp_ratios[2]
C
chenguowei01 已提交
104 105 106 107 108 109 110
        self.aspp4 = layer_utils.ConvBnRelu(
            num_channels=in_channels,
            num_filters=256,
            filter_size=3,
            using_sep_conv=using_sep_conv,
            dilation=aspp_ratios[2],
            padding=aspp_ratios[2])
111

112
        # After concat op, using 1*1 conv
C
chenguowei01 已提交
113 114
        self.conv_bn_relu = layer_utils.ConvBnRelu(
            num_channels=1280, num_filters=256, filter_size=1)
115 116

    def forward(self, x):
117

118 119 120 121 122 123
        x1 = self.image_average(x)
        x2 = self.aspp1(x)
        x3 = self.aspp2(x)
        x4 = self.aspp3(x)
        x5 = self.aspp4(x)
        x = fluid.layers.concat([x1, x2, x3, x4, x5], axis=1)
124

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
        x = self.conv_bn_relu(x)
        x = fluid.layers.dropout(x, dropout_prob=0.1)
        return x


class Decoder(dygraph.Layer):
    """
    Decoder module of DeepLabV3P model

    Args:
        num_classes (int): the number of classes.
        in_channels (int): the number of input channels in decoder module.
        using_sep_conv (bool): whether use separable conv or not. Default to True.

    """

    def __init__(self, num_classes, in_channels, using_sep_conv=True):
        super(Decoder, self).__init__()
143

C
chenguowei01 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
        self.conv_bn_relu1 = layer_utils.ConvBnRelu(
            num_channels=in_channels, num_filters=48, filter_size=1)

        self.conv_bn_relu2 = layer_utils.ConvBnRelu(
            num_channels=304,
            num_filters=256,
            filter_size=3,
            using_sep_conv=using_sep_conv,
            padding=1)
        self.conv_bn_relu3 = layer_utils.ConvBnRelu(
            num_channels=256,
            num_filters=256,
            filter_size=3,
            using_sep_conv=using_sep_conv,
            padding=1)
        self.conv = Conv2D(
            num_channels=256, num_filters=num_classes, filter_size=1)
161 162 163 164 165 166 167 168 169 170 171

    def forward(self, x, low_level_feat):
        low_level_feat = self.conv_bn_relu1(low_level_feat)
        x = fluid.layers.resize_bilinear(x, low_level_feat.shape[2:])
        x = fluid.layers.concat([x, low_level_feat], axis=1)
        x = self.conv_bn_relu2(x)
        x = self.conv_bn_relu3(x)
        x = self.conv(x)
        return x


C
chenguowei01 已提交
172
@manager.MODELS.add_component
173 174 175
class DeepLabV3P(dygraph.Layer):
    """
    The DeepLabV3P consists of three main components, Backbone, ASPP and Decoder
176
    The orginal artile refers to
177 178 179 180 181
    "Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation"
     Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, Hartwig Adam.
     (https://arxiv.org/abs/1802.02611)

    Args:
C
chenguowei01 已提交
182 183 184
        num_classes (int): the unique number of target classes.

        backbone (paddle.nn.Layer): backbone networks, currently support Xception65, Resnet101_vd. Default Resnet101_vd.
185

C
chenguowei01 已提交
186
        model_pretrained (str): the path of pretrained model.
187 188 189 190 191

        output_stride (int): the ratio of input size and final feature size. Default 16.

        backbone_indices (tuple): two values in the tuple indicte the indices of output of backbone.
                        the first index will be taken as a low-level feature in Deconder component;
192
                        the second one will be taken as input of ASPP component.
193 194 195 196 197 198 199 200 201
                        Usually backbone consists of four downsampling stage, and return an output of
                        each stage, so we set default (0, 3), which means taking feature map of the first
                        stage in backbone as low-level feature used in Decoder, and feature map of the fourth
                        stage as input of ASPP.

        backbone_channels (tuple): the same length with "backbone_indices". It indicates the channels of corresponding index.

        ignore_index (int): the value of ground-truth mask would be ignored while doing evaluation. Default 255.

202
        using_sep_conv (bool): a bool value indicates whether using separable convolutions
203 204
                        in ASPP and Decoder components. Default True.
    """
205 206

    def __init__(self,
C
chenguowei01 已提交
207
                 num_classes,
208
                 backbone,
C
chenguowei01 已提交
209
                 model_pretrained=None,
210
                 output_stride=16,
211
                 backbone_indices=(0, 3),
212 213
                 backbone_channels=(256, 2048),
                 ignore_index=255,
C
chenguowei01 已提交
214
                 using_sep_conv=True):
215 216 217

        super(DeepLabV3P, self).__init__()

C
chenguowei01 已提交
218 219
        # self.backbone = manager.BACKBONES[backbone](output_stride=output_stride)
        self.backbone = backbone
220
        self.aspp = ASPP(output_stride, backbone_channels[1], using_sep_conv)
C
chenguowei01 已提交
221 222
        self.decoder = Decoder(num_classes, backbone_channels[0],
                               using_sep_conv)
223 224 225
        self.ignore_index = ignore_index
        self.EPS = 1e-5
        self.backbone_indices = backbone_indices
C
chenguowei01 已提交
226
        self.init_weight(model_pretrained)
227

228 229
    def forward(self, input, label=None):

230 231 232 233 234 235
        _, feat_list = self.backbone(input)
        low_level_feat = feat_list[self.backbone_indices[0]]
        x = feat_list[self.backbone_indices[1]]
        x = self.aspp(x)
        logit = self.decoder(x, low_level_feat)
        logit = fluid.layers.resize_bilinear(logit, input.shape[2:])
236

237 238 239 240 241 242 243 244
        if self.training:
            return self._get_loss(logit, label)
        else:
            score_map = fluid.layers.softmax(logit, axis=1)
            score_map = fluid.layers.transpose(score_map, [0, 2, 3, 1])
            pred = fluid.layers.argmax(score_map, axis=3)
            pred = fluid.layers.unsqueeze(pred, axes=[3])
            return pred, score_map
245

246 247 248 249
    def init_weight(self, pretrained_model=None):
        """
        Initialize the parameters of model parts.
        Args:
C
chenguowei01 已提交
250
            pretrained_model ([str], optional): the path of pretrained model. Defaults to None.
251 252 253
        """
        if pretrained_model is not None:
            if os.path.exists(pretrained_model):
C
chenguowei01 已提交
254 255 256 257
                utils.load_pretrained_model(self, pretrained_model)
            else:
                raise Exception('Pretrained model is not found: {}'.format(
                    pretrained_model))
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282

    def _get_loss(self, logit, label):
        """
        compute forward loss of the model

        Args:
            logit (tensor): the logit of model output
            label (tensor): ground truth

        Returns:
            avg_loss (tensor): forward loss
        """
        logit = fluid.layers.transpose(logit, [0, 2, 3, 1])
        label = fluid.layers.transpose(label, [0, 2, 3, 1])
        mask = label != self.ignore_index
        mask = fluid.layers.cast(mask, 'float32')
        loss, probs = fluid.layers.softmax_with_cross_entropy(
            logit,
            label,
            ignore_index=self.ignore_index,
            return_softmax=True,
            axis=-1)

        loss = loss * mask
        avg_loss = fluid.layers.mean(loss) / (
C
chenguowei01 已提交
283
            fluid.layers.mean(mask) + self.EPS)
284 285 286 287

        label.stop_gradient = True
        mask.stop_gradient = True

288
        return avg_loss
289 290 291 292 293


def build_aspp(output_stride, using_sep_conv):
    return ASPP(output_stride=output_stride, using_sep_conv=using_sep_conv)

294

295 296 297
def build_decoder(num_classes, using_sep_conv):
    return Decoder(num_classes, using_sep_conv=using_sep_conv)

M
michaelowenliu 已提交
298

299
@manager.MODELS.add_component
300 301
def deeplabv3p_resnet101_vd(*args, **kwargs):
    pretrained_model = None
C
chenguowei01 已提交
302 303
    return DeepLabV3P(
        backbone='ResNet101_vd', pretrained_model=pretrained_model, **kwargs)
304

M
michaelowenliu 已提交
305

306
@manager.MODELS.add_component
307 308
def deeplabv3p_resnet101_vd_os8(*args, **kwargs):
    pretrained_model = None
C
chenguowei01 已提交
309 310 311 312 313
    return DeepLabV3P(
        backbone='ResNet101_vd',
        output_stride=8,
        pretrained_model=pretrained_model,
        **kwargs)
314

M
michaelowenliu 已提交
315

316
@manager.MODELS.add_component
317 318
def deeplabv3p_resnet50_vd(*args, **kwargs):
    pretrained_model = None
C
chenguowei01 已提交
319 320
    return DeepLabV3P(
        backbone='ResNet50_vd', pretrained_model=pretrained_model, **kwargs)
321

M
michaelowenliu 已提交
322

323
@manager.MODELS.add_component
324 325
def deeplabv3p_resnet50_vd_os8(*args, **kwargs):
    pretrained_model = None
C
chenguowei01 已提交
326 327 328 329 330
    return DeepLabV3P(
        backbone='ResNet50_vd',
        output_stride=8,
        pretrained_model=pretrained_model,
        **kwargs)
331

M
michaelowenliu 已提交
332

333
@manager.MODELS.add_component
334 335
def deeplabv3p_xception65_deeplab(*args, **kwargs):
    pretrained_model = None
C
chenguowei01 已提交
336 337 338 339 340 341
    return DeepLabV3P(
        backbone='Xception65_deeplab',
        pretrained_model=pretrained_model,
        backbone_indices=(0, 1),
        backbone_channels=(128, 2048),
        **kwargs)
342

M
michaelowenliu 已提交
343

344 345 346
@manager.MODELS.add_component
def deeplabv3p_mobilenetv3_large(*args, **kwargs):
    pretrained_model = None
C
chenguowei01 已提交
347 348 349 350 351 352
    return DeepLabV3P(
        backbone='MobileNetV3_large_x1_0',
        pretrained_model=pretrained_model,
        backbone_indices=(0, 3),
        backbone_channels=(24, 160),
        **kwargs)
353

M
michaelowenliu 已提交
354

355 356 357
@manager.MODELS.add_component
def deeplabv3p_mobilenetv3_small(*args, **kwargs):
    pretrained_model = None
C
chenguowei01 已提交
358 359 360 361 362 363
    return DeepLabV3P(
        backbone='MobileNetV3_small_x1_0',
        pretrained_model=pretrained_model,
        backbone_indices=(0, 3),
        backbone_channels=(16, 96),
        **kwargs)