resnet_vd.py 11.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import math

import numpy as np
import paddle
C
chenguowei01 已提交
24 25
import paddle.nn as nn
import paddle.nn.functional as F
C
chenguowei01 已提交
26
from paddle.nn import SyncBatchNorm as BatchNorm
C
chenguowei01 已提交
27 28
from paddle.nn import Conv2d, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2d, MaxPool2d, AvgPool2d
29 30

from paddleseg.utils import utils
M
michaelowenliu 已提交
31
from paddleseg.models.common import layer_libs, activation
32 33 34 35 36 37 38
from paddleseg.cvlibs import manager

__all__ = [
    "ResNet18_vd", "ResNet34_vd", "ResNet50_vd", "ResNet101_vd", "ResNet152_vd"
]


C
chenguowei01 已提交
39
class ConvBNLayer(nn.Layer):
40 41
    def __init__(
            self,
C
chenguowei01 已提交
42 43 44
            in_channels,
            out_channels,
            kernel_size,
45 46 47 48 49 50 51 52 53 54
            stride=1,
            dilation=1,
            groups=1,
            is_vd_mode=False,
            act=None,
            name=None,
    ):
        super(ConvBNLayer, self).__init__()

        self.is_vd_mode = is_vd_mode
C
chenguowei01 已提交
55 56
        self._pool2d_avg = AvgPool2d(
            kernel_size=2, stride=2, padding=0, ceil_mode=True)
C
chenguowei01 已提交
57 58 59 60
        self._conv = Conv2d(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
61
            stride=stride,
C
chenguowei01 已提交
62
            padding=(kernel_size - 1) // 2 if dilation == 1 else 0,
63 64 65 66 67 68 69
            dilation=dilation,
            groups=groups,
            bias_attr=False)
        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
C
chenguowei01 已提交
70
        self._batch_norm = BatchNorm(out_channels)
M
michaelowenliu 已提交
71
        self._act_op = activation.Activation(act=act)
72 73 74 75 76 77 78 79 80 81 82

    def forward(self, inputs):
        if self.is_vd_mode:
            inputs = self._pool2d_avg(inputs)
        y = self._conv(inputs)
        y = self._batch_norm(y)
        y = self._act_op(y)

        return y


C
chenguowei01 已提交
83
class BottleneckBlock(nn.Layer):
84
    def __init__(self,
C
chenguowei01 已提交
85 86
                 in_channels,
                 out_channels,
87 88 89 90 91 92 93 94
                 stride,
                 shortcut=True,
                 if_first=False,
                 dilation=1,
                 name=None):
        super(BottleneckBlock, self).__init__()

        self.conv0 = ConvBNLayer(
C
chenguowei01 已提交
95 96 97
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=1,
98 99 100 101 102 103
            act='relu',
            name=name + "_branch2a")

        self.dilation = dilation

        self.conv1 = ConvBNLayer(
C
chenguowei01 已提交
104 105 106
            in_channels=out_channels,
            out_channels=out_channels,
            kernel_size=3,
107 108 109 110 111
            stride=stride,
            act='relu',
            dilation=dilation,
            name=name + "_branch2b")
        self.conv2 = ConvBNLayer(
C
chenguowei01 已提交
112 113 114
            in_channels=out_channels,
            out_channels=out_channels * 4,
            kernel_size=1,
115 116 117 118 119
            act=None,
            name=name + "_branch2c")

        if not shortcut:
            self.short = ConvBNLayer(
C
chenguowei01 已提交
120 121 122
                in_channels=in_channels,
                out_channels=out_channels * 4,
                kernel_size=1,
123 124 125 126 127 128 129 130 131 132 133 134 135
                stride=1,
                is_vd_mode=False if if_first or stride == 1 else True,
                name=name + "_branch1")

        self.shortcut = shortcut

    def forward(self, inputs):
        y = self.conv0(inputs)

        ####################################################################
        # If given dilation rate > 1, using corresponding padding
        if self.dilation > 1:
            padding = self.dilation
C
chenguowei01 已提交
136
            y = F.pad(y, [0, 0, 0, 0, padding, padding, padding, padding])
137 138 139 140 141 142 143 144 145
        #####################################################################
        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)

C
chenguowei01 已提交
146 147
        y = paddle.elementwise_add(x=short, y=conv2, act='relu')
        return y
148 149


C
chenguowei01 已提交
150
class BasicBlock(nn.Layer):
151
    def __init__(self,
C
chenguowei01 已提交
152 153
                 in_channels,
                 out_channels,
154 155 156 157 158 159 160
                 stride,
                 shortcut=True,
                 if_first=False,
                 name=None):
        super(BasicBlock, self).__init__()
        self.stride = stride
        self.conv0 = ConvBNLayer(
C
chenguowei01 已提交
161 162 163
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=3,
164 165 166 167
            stride=stride,
            act='relu',
            name=name + "_branch2a")
        self.conv1 = ConvBNLayer(
C
chenguowei01 已提交
168 169 170
            in_channels=out_channels,
            out_channels=out_channels,
            kernel_size=3,
171 172 173 174 175
            act=None,
            name=name + "_branch2b")

        if not shortcut:
            self.short = ConvBNLayer(
C
chenguowei01 已提交
176 177 178
                in_channels=in_channels,
                out_channels=out_channels,
                kernel_size=1,
179 180 181 182 183 184 185 186 187 188 189 190 191 192
                stride=1,
                is_vd_mode=False if if_first else True,
                name=name + "_branch1")

        self.shortcut = shortcut

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
C
chenguowei01 已提交
193
        y = paddle.elementwise_add(x=short, y=conv1, act='relu')
194

C
chenguowei01 已提交
195
        return y
196 197


C
chenguowei01 已提交
198
class ResNet_vd(nn.Layer):
199 200 201 202 203
    def __init__(self,
                 backbone_pretrained=None,
                 layers=50,
                 class_dim=1000,
                 output_stride=None,
M
michaelowenliu 已提交
204
                 multi_grid=(1, 1, 1)):
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
        super(ResNet_vd, self).__init__()

        self.layers = layers
        supported_layers = [18, 34, 50, 101, 152, 200]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(
                supported_layers, layers)

        if layers == 18:
            depth = [2, 2, 2, 2]
        elif layers == 34 or layers == 50:
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
        elif layers == 200:
            depth = [3, 12, 48, 3]
        num_channels = [64, 256, 512, 1024
                        ] if layers >= 50 else [64, 64, 128, 256]
        num_filters = [64, 128, 256, 512]

        dilation_dict = None
        if output_stride == 8:
            dilation_dict = {2: 2, 3: 4}
        elif output_stride == 16:
            dilation_dict = {3: 2}

        self.conv1_1 = ConvBNLayer(
C
chenguowei01 已提交
234 235 236
            in_channels=3,
            out_channels=32,
            kernel_size=3,
237 238 239 240
            stride=2,
            act='relu',
            name="conv1_1")
        self.conv1_2 = ConvBNLayer(
C
chenguowei01 已提交
241 242 243
            in_channels=32,
            out_channels=32,
            kernel_size=3,
244 245 246 247
            stride=1,
            act='relu',
            name="conv1_2")
        self.conv1_3 = ConvBNLayer(
C
chenguowei01 已提交
248 249 250
            in_channels=32,
            out_channels=64,
            kernel_size=3,
251 252 253
            stride=1,
            act='relu',
            name="conv1_3")
C
chenguowei01 已提交
254
        self.pool2d_max = MaxPool2d(kernel_size=3, stride=2, padding=1)
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285

        # self.block_list = []
        self.stage_list = []
        if layers >= 50:
            for block in range(len(depth)):
                shortcut = False
                block_list = []
                for i in range(depth[block]):
                    if layers in [101, 152] and block == 2:
                        if i == 0:
                            conv_name = "res" + str(block + 2) + "a"
                        else:
                            conv_name = "res" + str(block + 2) + "b" + str(i)
                    else:
                        conv_name = "res" + str(block + 2) + chr(97 + i)

                    ###############################################################################
                    # Add dilation rate for some segmentation tasks, if dilation_dict is not None.
                    dilation_rate = dilation_dict[
                        block] if dilation_dict and block in dilation_dict else 1

                    # Actually block here is 'stage', and i is 'block' in 'stage'
                    # At the stage 4, expand the the dilation_rate using multi_grid, default (1, 2, 4)
                    if block == 3:
                        dilation_rate = dilation_rate * multi_grid[i]
                    #print("stage {}, block {}: dilation rate".format(block, i), dilation_rate)
                    ###############################################################################

                    bottleneck_block = self.add_sublayer(
                        'bb_%d_%d' % (block, i),
                        BottleneckBlock(
C
chenguowei01 已提交
286
                            in_channels=num_channels[block]
287
                            if i == 0 else num_filters[block] * 4,
C
chenguowei01 已提交
288
                            out_channels=num_filters[block],
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
                            stride=2 if i == 0 and block != 0
                            and dilation_rate == 1 else 1,
                            shortcut=shortcut,
                            if_first=block == i == 0,
                            name=conv_name,
                            dilation=dilation_rate))

                    block_list.append(bottleneck_block)
                    shortcut = True
                self.stage_list.append(block_list)
        else:
            for block in range(len(depth)):
                shortcut = False
                block_list = []
                for i in range(depth[block]):
                    conv_name = "res" + str(block + 2) + chr(97 + i)
                    basic_block = self.add_sublayer(
                        'bb_%d_%d' % (block, i),
                        BasicBlock(
C
chenguowei01 已提交
308
                            in_channels=num_channels[block]
309
                            if i == 0 else num_filters[block],
C
chenguowei01 已提交
310
                            out_channels=num_filters[block],
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
                            if_first=block == i == 0,
                            name=conv_name))
                    block_list.append(basic_block)
                    shortcut = True
                self.stage_list.append(block_list)

    def forward(self, inputs):
        y = self.conv1_1(inputs)
        y = self.conv1_2(y)
        y = self.conv1_3(y)
        y = self.pool2d_max(y)

        # A feature list saves the output feature map of each stage.
        feat_list = []
        for i, stage in enumerate(self.stage_list):
            for j, block in enumerate(stage):
                y = block(y)
            feat_list.append(y)

C
chenguowei01 已提交
332
        return feat_list
333 334


C
chenguowei01 已提交
335
@manager.BACKBONES.add_component
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
def ResNet18_vd(**args):
    model = ResNet_vd(layers=18, **args)
    return model


def ResNet34_vd(**args):
    model = ResNet_vd(layers=34, **args)
    return model


@manager.BACKBONES.add_component
def ResNet50_vd(**args):
    model = ResNet_vd(layers=50, **args)
    return model


@manager.BACKBONES.add_component
def ResNet101_vd(**args):
    model = ResNet_vd(layers=101, **args)
    return model


def ResNet152_vd(**args):
    model = ResNet_vd(layers=152, **args)
    return model


def ResNet200_vd(**args):
    model = ResNet_vd(layers=200, **args)
    return model