mobilenetv3.py 13.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import os

import numpy as np
import paddle
24 25 26
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import Conv2d, AdaptiveAvgPool2d
27
from paddle.nn import SyncBatchNorm as BatchNorm
W
wuyefeilin 已提交
28 29
# from paddle.regularizer import L2Decay
from paddle.fluid.regularizer import L2Decay
30
from paddle import ParamAttr
31

32
from paddleseg.models.common import layer_libs, activation
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
from paddleseg.cvlibs import manager
from paddleseg.utils import utils

__all__ = [
    "MobileNetV3_small_x0_35", "MobileNetV3_small_x0_5",
    "MobileNetV3_small_x0_75", "MobileNetV3_small_x1_0",
    "MobileNetV3_small_x1_25", "MobileNetV3_large_x0_35",
    "MobileNetV3_large_x0_5", "MobileNetV3_large_x0_75",
    "MobileNetV3_large_x1_0", "MobileNetV3_large_x1_25"
]


def make_divisible(v, divisor=8, min_value=None):
    if min_value is None:
        min_value = divisor
    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
    if new_v < 0.9 * v:
        new_v += divisor
    return new_v


def get_padding_same(kernel_size, dilation_rate):
    """
    SAME padding implementation given kernel_size and dilation_rate.
    The calculation formula as following:
        (F-(k+(k -1)*(r-1))+2*p)/s + 1 = F_new
        where F: a feature map
              k: kernel size, r: dilation rate, p: padding value, s: stride
              F_new: new feature map
    Args:
        kernel_size (int)
        dilation_rate (int)

    Returns:
        padding_same (int): padding value
    """
    k = kernel_size
    r = dilation_rate
    padding_same = (k + (k - 1) * (r - 1) - 1) // 2

    return padding_same


76
class MobileNetV3(nn.Layer):
77
    def __init__(self,
78
                 pretrained=None,
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
                 scale=1.0,
                 model_name="small",
                 class_dim=1000,
                 output_stride=None):
        super(MobileNetV3, self).__init__()

        inplanes = 16
        if model_name == "large":
            self.cfg = [
                # k, exp, c,  se,     nl,  s,
                [3, 16, 16, False, "relu", 1],
                [3, 64, 24, False, "relu", 2],
                [3, 72, 24, False, "relu", 1],  # output 1 -> out_index=2
                [5, 72, 40, True, "relu", 2],
                [5, 120, 40, True, "relu", 1],
                [5, 120, 40, True, "relu", 1],  # output 2 -> out_index=5
                [3, 240, 80, False, "hard_swish", 2],
                [3, 200, 80, False, "hard_swish", 1],
                [3, 184, 80, False, "hard_swish", 1],
                [3, 184, 80, False, "hard_swish", 1],
                [3, 480, 112, True, "hard_swish", 1],
                [3, 672, 112, True, "hard_swish",
                 1],  # output 3 -> out_index=11
                [5, 672, 160, True, "hard_swish", 2],
                [5, 960, 160, True, "hard_swish", 1],
                [5, 960, 160, True, "hard_swish",
                 1],  # output 3 -> out_index=14
            ]
            self.out_indices = [2, 5, 11, 14]
108 109 110
            self.feat_channels = [
                make_divisible(i * scale) for i in [24, 40, 112, 160]
            ]
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

            self.cls_ch_squeeze = 960
            self.cls_ch_expand = 1280
        elif model_name == "small":
            self.cfg = [
                # k, exp, c,  se,     nl,  s,
                [3, 16, 16, True, "relu", 2],  # output 1 -> out_index=0
                [3, 72, 24, False, "relu", 2],
                [3, 88, 24, False, "relu", 1],  # output 2 -> out_index=3
                [5, 96, 40, True, "hard_swish", 2],
                [5, 240, 40, True, "hard_swish", 1],
                [5, 240, 40, True, "hard_swish", 1],
                [5, 120, 48, True, "hard_swish", 1],
                [5, 144, 48, True, "hard_swish", 1],  # output 3 -> out_index=7
                [5, 288, 96, True, "hard_swish", 2],
                [5, 576, 96, True, "hard_swish", 1],
                [5, 576, 96, True, "hard_swish", 1],  # output 4 -> out_index=10
            ]
            self.out_indices = [0, 3, 7, 10]
130 131 132
            self.feat_channels = [
                make_divisible(i * scale) for i in [16, 24, 48, 96]
            ]
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179

            self.cls_ch_squeeze = 576
            self.cls_ch_expand = 1280
        else:
            raise NotImplementedError(
                "mode[{}_model] is not implemented!".format(model_name))

        ###################################################
        # modify stride and dilation based on output_stride
        self.dilation_cfg = [1] * len(self.cfg)
        self.modify_bottle_params(output_stride=output_stride)
        ###################################################

        self.conv1 = ConvBNLayer(
            in_c=3,
            out_c=make_divisible(inplanes * scale),
            filter_size=3,
            stride=2,
            padding=1,
            num_groups=1,
            if_act=True,
            act="hard_swish",
            name="conv1")

        self.block_list = []

        inplanes = make_divisible(inplanes * scale)
        for i, (k, exp, c, se, nl, s) in enumerate(self.cfg):
            ######################################
            # add dilation rate
            dilation_rate = self.dilation_cfg[i]
            ######################################
            self.block_list.append(
                ResidualUnit(
                    in_c=inplanes,
                    mid_c=make_divisible(scale * exp),
                    out_c=make_divisible(scale * c),
                    filter_size=k,
                    stride=s,
                    dilation=dilation_rate,
                    use_se=se,
                    act=nl,
                    name="conv" + str(i + 2)))
            self.add_sublayer(
                sublayer=self.block_list[-1], name="conv" + str(i + 2))
            inplanes = make_divisible(scale * c)

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
        # self.last_second_conv = ConvBNLayer(
        #     in_c=inplanes,
        #     out_c=make_divisible(scale * self.cls_ch_squeeze),
        #     filter_size=1,
        #     stride=1,
        #     padding=0,
        #     num_groups=1,
        #     if_act=True,
        #     act="hard_swish",
        #     name="conv_last")

        # self.pool = Pool2D(
        #     pool_type="avg", global_pooling=True, use_cudnn=False)

        # self.last_conv = Conv2d(
        #     in_channels=make_divisible(scale * self.cls_ch_squeeze),
        #     out_channels=self.cls_ch_expand,
        #     kernel_size=1,
        #     stride=1,
        #     padding=0,
        #     bias_attr=False)

        # self.out = Linear(
        #     input_dim=self.cls_ch_expand,
        #     output_dim=class_dim)

        utils.load_pretrained_model(self, pretrained)
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222

    def modify_bottle_params(self, output_stride=None):

        if output_stride is not None and output_stride % 2 != 0:
            raise Exception("output stride must to be even number")
        if output_stride is not None:
            stride = 2
            rate = 1
            for i, _cfg in enumerate(self.cfg):
                stride = stride * _cfg[-1]
                if stride > output_stride:
                    rate = rate * _cfg[-1]
                    self.cfg[i][-1] = 1

                self.dilation_cfg[i] = rate

223
    def forward(self, inputs, label=None):
224 225 226 227 228 229 230 231
        x = self.conv1(inputs)
        # A feature list saves each downsampling feature.
        feat_list = []
        for i, block in enumerate(self.block_list):
            x = block(x)
            if i in self.out_indices:
                feat_list.append(x)
            #print("block {}:".format(i),x.shape, self.dilation_cfg[i])
232 233 234 235 236 237 238 239 240 241 242 243
        # x = self.last_second_conv(x)
        # x = self.pool(x)
        # x = self.last_conv(x)
        # x = F.hard_swish(x)
        # x = F.dropout(x=x, dropout_prob=dropout_prob)
        # x = paddle.reshape(x, shape=[x.shape[0], x.shape[1]])
        # x = self.out(x)

        return feat_list


class ConvBNLayer(nn.Layer):
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
    def __init__(self,
                 in_c,
                 out_c,
                 filter_size,
                 stride,
                 padding,
                 dilation=1,
                 num_groups=1,
                 if_act=True,
                 act=None,
                 use_cudnn=True,
                 name=""):
        super(ConvBNLayer, self).__init__()
        self.if_act = if_act
        self.act = act

260 261 262 263
        self.conv = Conv2d(
            in_channels=in_c,
            out_channels=out_c,
            kernel_size=filter_size,
264 265 266 267
            stride=stride,
            padding=padding,
            dilation=dilation,
            groups=num_groups,
268
            bias_attr=False)
269 270
        self.bn = BatchNorm(
            num_features=out_c,
271 272
            weight_attr=ParamAttr(regularizer=L2Decay(0.0)),
            bias_attr=ParamAttr(regularizer=L2Decay(0.0)))
273

274
        self._act_op = activation.Activation(act=None)
275 276 277 278 279

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        if self.if_act:
280
            x = self._act_op(x)
281 282 283
        return x


284
class ResidualUnit(nn.Layer):
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
    def __init__(self,
                 in_c,
                 mid_c,
                 out_c,
                 filter_size,
                 stride,
                 use_se,
                 dilation=1,
                 act=None,
                 name=''):
        super(ResidualUnit, self).__init__()
        self.if_shortcut = stride == 1 and in_c == out_c
        self.if_se = use_se

        self.expand_conv = ConvBNLayer(
            in_c=in_c,
            out_c=mid_c,
            filter_size=1,
            stride=1,
            padding=0,
            if_act=True,
            act=act,
            name=name + "_expand")

        self.bottleneck_conv = ConvBNLayer(
            in_c=mid_c,
            out_c=mid_c,
            filter_size=filter_size,
            stride=stride,
            padding=get_padding_same(
                filter_size,
                dilation),  #int((filter_size - 1) // 2) + (dilation - 1),
            dilation=dilation,
            num_groups=mid_c,
            if_act=True,
            act=act,
            name=name + "_depthwise")
        if self.if_se:
            self.mid_se = SEModule(mid_c, name=name + "_se")
        self.linear_conv = ConvBNLayer(
            in_c=mid_c,
            out_c=out_c,
            filter_size=1,
            stride=1,
            padding=0,
            if_act=False,
            act=None,
            name=name + "_linear")
        self.dilation = dilation

    def forward(self, inputs):
        x = self.expand_conv(inputs)
        x = self.bottleneck_conv(x)
        if self.if_se:
            x = self.mid_se(x)
        x = self.linear_conv(x)
        if self.if_shortcut:
342
            x = inputs + x
343 344 345
        return x


346
class SEModule(nn.Layer):
347 348
    def __init__(self, channel, reduction=4, name=""):
        super(SEModule, self).__init__()
349 350 351 352 353
        self.avg_pool = AdaptiveAvgPool2d(1)
        self.conv1 = Conv2d(
            in_channels=channel,
            out_channels=channel // reduction,
            kernel_size=1,
354
            stride=1,
355 356 357 358 359
            padding=0)
        self.conv2 = Conv2d(
            in_channels=channel // reduction,
            out_channels=channel,
            kernel_size=1,
360
            stride=1,
361
            padding=0)
362 363 364 365

    def forward(self, inputs):
        outputs = self.avg_pool(inputs)
        outputs = self.conv1(outputs)
366
        outputs = F.relu(outputs)
367
        outputs = self.conv2(outputs)
368 369
        outputs = F.hard_sigmoid(outputs)
        return paddle.multiply(x=inputs, y=outputs, axis=0)
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421


def MobileNetV3_small_x0_35(**kwargs):
    model = MobileNetV3(model_name="small", scale=0.35, **kwargs)
    return model


def MobileNetV3_small_x0_5(**kwargs):
    model = MobileNetV3(model_name="small", scale=0.5, **kwargs)
    return model


def MobileNetV3_small_x0_75(**kwargs):
    model = MobileNetV3(model_name="small", scale=0.75, **kwargs)
    return model


@manager.BACKBONES.add_component
def MobileNetV3_small_x1_0(**kwargs):
    model = MobileNetV3(model_name="small", scale=1.0, **kwargs)
    return model


def MobileNetV3_small_x1_25(**kwargs):
    model = MobileNetV3(model_name="small", scale=1.25, **kwargs)
    return model


def MobileNetV3_large_x0_35(**kwargs):
    model = MobileNetV3(model_name="large", scale=0.35, **kwargs)
    return model


def MobileNetV3_large_x0_5(**kwargs):
    model = MobileNetV3(model_name="large", scale=0.5, **kwargs)
    return model


def MobileNetV3_large_x0_75(**kwargs):
    model = MobileNetV3(model_name="large", scale=0.75, **kwargs)
    return model


@manager.BACKBONES.add_component
def MobileNetV3_large_x1_0(**kwargs):
    model = MobileNetV3(model_name="large", scale=1.0, **kwargs)
    return model


def MobileNetV3_large_x1_25(**kwargs):
    model = MobileNetV3(model_name="large", scale=1.25, **kwargs)
    return model