export_serving_model.py 4.1 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import time
import pprint
import cv2
import argparse
import numpy as np
import paddle.fluid as fluid

from utils.config import cfg
from models.model_builder import build_model
from models.model_builder import ModelPhase


def parse_args():
    parser = argparse.ArgumentParser(
        description='PaddleSeg Inference Model Exporter')
    parser.add_argument(
        '--cfg',
        dest='cfg_file',
        help='Config file for training (and optionally testing)',
        default=None,
        type=str)
    parser.add_argument('opts',
                        help='See utils/config.py for all options',
                        default=None,
                        nargs=argparse.REMAINDER)
    if len(sys.argv) == 1:
        parser.print_help()
        sys.exit(1)
    return parser.parse_args()


def export_inference_config():
    deploy_cfg = '''DEPLOY:
        USE_GPU : 1
        USE_PR : 0
        MODEL_PATH : "%s"
        MODEL_FILENAME : "%s"
        PARAMS_FILENAME : "%s"
        EVAL_CROP_SIZE : %s
        MEAN : %s
        STD : %s
        IMAGE_TYPE : "%s"
        NUM_CLASSES : %d
        CHANNELS : %d
        PRE_PROCESSOR : "SegPreProcessor"
        PREDICTOR_MODE : "ANALYSIS"
        BATCH_SIZE : 1
    ''' % (cfg.FREEZE.SAVE_DIR, cfg.FREEZE.MODEL_FILENAME,
           cfg.FREEZE.PARAMS_FILENAME, cfg.EVAL_CROP_SIZE, cfg.MEAN, cfg.STD,
           cfg.DATASET.IMAGE_TYPE, cfg.DATASET.NUM_CLASSES, len(cfg.STD))
    if not os.path.exists(cfg.FREEZE.SAVE_DIR):
        os.mkdir(cfg.FREEZE.SAVE_DIR)
    yaml_path = os.path.join(cfg.FREEZE.SAVE_DIR, 'deploy.yaml')
    with open(yaml_path, "w") as fp:
        fp.write(deploy_cfg)
    return yaml_path


def export_serving_model(args):
    """
    Export PaddlePaddle inference model for prediction depolyment and serving.
    """
    print("Exporting serving model...")
    startup_prog = fluid.Program()
    infer_prog = fluid.Program()
    image, logit_out = build_model(infer_prog,
                                   startup_prog,
                                   phase=ModelPhase.PREDICT)

    # Use CPU for exporting inference model instead of GPU
    place = fluid.CPUPlace()
    exe = fluid.Executor(place)
    exe.run(startup_prog)
    infer_prog = infer_prog.clone(for_test=True)

    if os.path.exists(cfg.TEST.TEST_MODEL):
        print('load test model:', cfg.TEST.TEST_MODEL)
        try:
            fluid.load(infer_prog, os.path.join(cfg.TEST.TEST_MODEL, 'model'),
                       exe)
        except:
            fluid.io.load_params(exe,
                                 cfg.TEST.TEST_MODEL,
                                 main_program=infer_prog)
    else:
        print("TEST.TEST_MODEL diretory is empty!")
        exit(-1)

    from paddle_serving_client.io import save_model
    save_model(
        cfg.FREEZE.SAVE_DIR + "/serving_server",
        cfg.FREEZE.SAVE_DIR + "/serving_client",
        {image.name: image},
        {logit_out.name: logit_out},
        infer_prog,
    )
    print("Serving model exported!")
    print("Exporting serving model config...")
    deploy_cfg_path = export_inference_config()
    print("Serving model saved : [%s]" % (deploy_cfg_path))


def main():
    args = parse_args()
    if args.cfg_file is not None:
        cfg.update_from_file(args.cfg_file)
    if args.opts:
        cfg.update_from_list(args.opts)
    cfg.check_and_infer()
    print(pprint.pformat(cfg))
    export_serving_model(args)


if __name__ == '__main__':
    main()