eval.py 5.3 KB
Newer Older
W
wuzewu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
# GPU memory garbage collection optimization flags
os.environ['FLAGS_eager_delete_tensor_gb'] = "0.0"

import sys
import time
import argparse
import functools
import pprint
import cv2
import numpy as np
import paddle
import paddle.fluid as fluid

from utils.config import cfg
from utils.timer import Timer, calculate_eta
from models.model_builder import build_model
from models.model_builder import ModelPhase
from reader import SegDataset
from metrics import ConfusionMatrix


def parse_args():
    parser = argparse.ArgumentParser(description='PaddleSeg model evalution')
    parser.add_argument(
        '--cfg',
        dest='cfg_file',
        help='Config file for training (and optionally testing)',
        default=None,
        type=str)
    parser.add_argument(
        '--use_gpu',
        dest='use_gpu',
        help='Use gpu or cpu',
        action='store_true',
        default=False)
    parser.add_argument(
        '--use_mpio',
        dest='use_mpio',
        help='Use multiprocess IO or not',
        action='store_true',
        default=False)
    parser.add_argument(
        'opts',
        help='See utils/config.py for all options',
        default=None,
        nargs=argparse.REMAINDER)
    if len(sys.argv) == 1:
        parser.print_help()
        sys.exit(1)
    return parser.parse_args()


def evaluate(cfg, ckpt_dir=None, use_gpu=False, use_mpio=False, **kwargs):
    np.set_printoptions(precision=5, suppress=True)

    startup_prog = fluid.Program()
    test_prog = fluid.Program()
    dataset = SegDataset(
        file_list=cfg.DATASET.VAL_FILE_LIST,
        mode=ModelPhase.EVAL,
        data_dir=cfg.DATASET.DATA_DIR)

    def data_generator():
        #TODO: check is batch reader compatitable with Windows
        if use_mpio:
            data_gen = dataset.multiprocess_generator(
                num_processes=cfg.DATALOADER.NUM_WORKERS,
                max_queue_size=cfg.DATALOADER.BUF_SIZE)
        else:
            data_gen = dataset.generator()

        for b in data_gen:
            yield b[0], b[1], b[2]

    py_reader, avg_loss, pred, grts, masks = build_model(
        test_prog, startup_prog, phase=ModelPhase.EVAL)

    py_reader.decorate_sample_generator(
        data_generator, drop_last=False, batch_size=cfg.BATCH_SIZE)

    # Get device environment
    places = fluid.cuda_places() if use_gpu else fluid.cpu_places()
    place = places[0]
    dev_count = len(places)
W
wuzewu 已提交
105
    print("#Device count: {}".format(dev_count))
W
wuzewu 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167

    exe = fluid.Executor(place)
    exe.run(startup_prog)

    test_prog = test_prog.clone(for_test=True)

    ckpt_dir = cfg.TEST.TEST_MODEL if not ckpt_dir else ckpt_dir

    if ckpt_dir is not None:
        print('load test model:', ckpt_dir)
        fluid.io.load_params(exe, ckpt_dir, main_program=test_prog)

    # Use streaming confusion matrix to calculate mean_iou
    np.set_printoptions(
        precision=4, suppress=True, linewidth=160, floatmode="fixed")
    conf_mat = ConfusionMatrix(cfg.DATASET.NUM_CLASSES, streaming=True)
    fetch_list = [avg_loss.name, pred.name, grts.name, masks.name]
    num_images = 0
    step = 0
    all_step = cfg.DATASET.TEST_TOTAL_IMAGES // cfg.BATCH_SIZE + 1
    timer = Timer()
    timer.start()
    py_reader.start()
    while True:
        try:
            step += 1
            loss, pred, grts, masks = exe.run(
                test_prog, fetch_list=fetch_list, return_numpy=True)

            loss = np.mean(np.array(loss))

            num_images += pred.shape[0]
            conf_mat.calculate(pred, grts, masks)
            _, iou = conf_mat.mean_iou()
            _, acc = conf_mat.accuracy()

            speed = 1.0 / timer.elapsed_time()

            print(
                "[EVAL]step={} loss={:.5f} acc={:.4f} IoU={:.4f} step/sec={:.2f} | ETA {}"
                .format(step, loss, acc, iou, speed,
                        calculate_eta(all_step - step, speed)))
            timer.restart()
            sys.stdout.flush()
        except fluid.core.EOFException:
            break

    category_iou, avg_iou = conf_mat.mean_iou()
    category_acc, avg_acc = conf_mat.accuracy()
    print("[EVAL]#image={} acc={:.4f} IoU={:.4f}".format(
        num_images, avg_acc, avg_iou))
    print("[EVAL]Category IoU:", category_iou)
    print("[EVAL]Category Acc:", category_acc)
    print("[EVAL]Kappa:{:.4f}".format(conf_mat.kappa()))

    return category_iou, avg_iou, category_acc, avg_acc


def main():
    args = parse_args()
    if args.cfg_file is not None:
        cfg.update_from_file(args.cfg_file)
168
    if args.opts:
W
wuzewu 已提交
169 170 171 172 173 174 175 176
        cfg.update_from_list(args.opts)
    cfg.check_and_infer()
    print(pprint.pformat(cfg))
    evaluate(cfg, **args.__dict__)


if __name__ == '__main__':
    main()