val.py 4.8 KB
Newer Older
C
chenguowei01 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
C
chenguowei01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os
import math

from paddle.fluid.dygraph.base import to_variable
import numpy as np
import paddle.fluid as fluid
C
chenguowei01 已提交
22
from paddle.fluid.dygraph.parallel import ParallelEnv
C
chenguowei01 已提交
23
from paddle.fluid.io import DataLoader
C
chenguowei01 已提交
24
from paddle.fluid.dataloader import BatchSampler
C
chenguowei01 已提交
25

C
chenguowei01 已提交
26
from datasets import OpticDiscSeg
C
chenguowei01 已提交
27 28 29 30 31 32 33 34
import transforms as T
import models
import utils.logging as logging
from utils import get_environ_info
from utils import ConfusionMatrix


def parse_args():
C
chenguowei01 已提交
35
    parser = argparse.ArgumentParser(description='Model evaluation')
C
chenguowei01 已提交
36 37

    # params of model
C
chenguowei01 已提交
38 39 40
    parser.add_argument(
        '--model_name',
        dest='model_name',
C
chenguowei01 已提交
41
        help="Model type for evaluation, which is one of ('UNet')",
C
chenguowei01 已提交
42 43
        type=str,
        default='UNet')
C
chenguowei01 已提交
44 45

    # params of dataset
C
chenguowei01 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
    parser.add_argument(
        '--data_dir',
        dest='data_dir',
        help='The root directory of dataset',
        type=str)
    parser.add_argument(
        '--val_list',
        dest='val_list',
        help='Val list file of dataset',
        type=str,
        default=None)
    parser.add_argument(
        '--num_classes',
        dest='num_classes',
        help='Number of classes',
        type=int,
        default=2)
C
chenguowei01 已提交
63 64

    # params of evaluate
C
chenguowei01 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
    parser.add_argument(
        "--input_size",
        dest="input_size",
        help="The image size for net inputs.",
        nargs=2,
        default=[512, 512],
        type=int)
    parser.add_argument(
        '--batch_size',
        dest='batch_size',
        help='Mini batch size',
        type=int,
        default=2)
    parser.add_argument(
        '--model_dir',
        dest='model_dir',
        help='The path of model for evaluation',
        type=str,
        default=None)
C
chenguowei01 已提交
84 85 86 87 88 89

    return parser.parse_args()


def evaluate(model,
             eval_dataset=None,
C
chenguowei01 已提交
90
             places=None,
C
chenguowei01 已提交
91 92 93 94 95
             model_dir=None,
             num_classes=None,
             batch_size=2,
             ignore_index=255,
             epoch_id=None):
C
chenguowei01 已提交
96
    ckpt_path = os.path.join(model_dir, 'model')
C
chenguowei01 已提交
97 98 99 100
    para_state_dict, opti_state_dict = fluid.load_dygraph(ckpt_path)
    model.set_dict(para_state_dict)
    model.eval()

C
chenguowei01 已提交
101 102
    batch_sampler = BatchSampler(
        eval_dataset, batch_size=batch_size, shuffle=False, drop_last=False)
C
chenguowei01 已提交
103 104 105 106 107 108
    loader = DataLoader(
        eval_dataset,
        batch_sampler=batch_sampler,
        places=places,
        return_list=True,
    )
C
chenguowei01 已提交
109
    total_steps = math.ceil(len(eval_dataset) * 1.0 / batch_size)
C
chenguowei01 已提交
110 111 112 113
    conf_mat = ConfusionMatrix(num_classes, streaming=True)

    logging.info(
        "Start to evaluating(total_samples={}, total_steps={})...".format(
C
chenguowei01 已提交
114
            len(eval_dataset), total_steps))
C
chenguowei01 已提交
115 116 117
    for step, data in enumerate(loader):
        images = data[0]
        labels = data[1].astype('int64')
C
chenguowei01 已提交
118
        pred, _ = model(images, mode='eval')
C
chenguowei01 已提交
119 120

        pred = pred.numpy()
C
chenguowei01 已提交
121
        labels = labels.numpy()
C
chenguowei01 已提交
122 123 124 125 126 127 128 129 130 131
        mask = labels != ignore_index
        conf_mat.calculate(pred=pred, label=labels, ignore=mask)
        _, iou = conf_mat.mean_iou()

        logging.info("[EVAL] Epoch={}, Step={}/{}, iou={}".format(
            epoch_id, step + 1, total_steps, iou))

    category_iou, miou = conf_mat.mean_iou()
    category_acc, macc = conf_mat.accuracy()
    logging.info("[EVAL] #image={} acc={:.4f} IoU={:.4f}".format(
C
chenguowei01 已提交
132
        len(eval_dataset), macc, miou))
C
chenguowei01 已提交
133 134 135 136 137 138
    logging.info("[EVAL] Category IoU: " + str(category_iou))
    logging.info("[EVAL] Category Acc: " + str(category_acc))
    logging.info("[EVAL] Kappa:{:.4f} ".format(conf_mat.kappa()))


def main(args):
C
chenguowei01 已提交
139
    env_info = get_environ_info()
C
chenguowei01 已提交
140 141 142
    places = fluid.CUDAPlace(ParallelEnv().dev_id) \
        if env_info['place'] == 'cuda' and fluid.is_compiled_with_cuda() \
        else fluid.CPUPlace()
C
chenguowei01 已提交
143 144
    with fluid.dygraph.guard(places):
        eval_transforms = T.Compose([T.Resize(args.input_size), T.Normalize()])
C
chenguowei01 已提交
145
        eval_dataset = OpticDiscSeg(transforms=eval_transforms, mode='eval')
C
chenguowei01 已提交
146 147 148 149

        if args.model_name == 'UNet':
            model = models.UNet(num_classes=args.num_classes)

C
chenguowei01 已提交
150 151 152
        evaluate(
            model,
            eval_dataset,
C
chenguowei01 已提交
153
            places=places,
C
chenguowei01 已提交
154 155 156
            model_dir=args.model_dir,
            num_classes=args.num_classes,
            batch_size=args.batch_size)
C
chenguowei01 已提交
157 158 159 160


if __name__ == '__main__':
    args = parse_args()
C
chenguowei01 已提交
161
    main(args)