train.py 16.3 KB
Newer Older
W
wuzewu 已提交
1
# coding: utf8
W
wuyefeilin 已提交
2
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
W
wuzewu 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
# GPU memory garbage collection optimization flags
os.environ['FLAGS_eager_delete_tensor_gb'] = "0.0"

import sys
import argparse
import pprint
X
xiegegege 已提交
27
import random
W
wuzewu 已提交
28 29 30 31
import shutil

import numpy as np
import paddle.fluid as fluid
H
hysunflower 已提交
32
from paddle.fluid import profiler
W
wuzewu 已提交
33 34 35 36 37 38 39 40 41

from utils.config import cfg
from utils.timer import Timer, calculate_eta
from metrics import ConfusionMatrix
from reader import SegDataset
from models.model_builder import build_model
from models.model_builder import ModelPhase
from eval import evaluate
from vis import visualize
42
from utils import dist_utils
W
wuyefeilin 已提交
43
from utils.load_model_utils import load_pretrained_weights
W
wuzewu 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77


def parse_args():
    parser = argparse.ArgumentParser(description='PaddleSeg training')
    parser.add_argument(
        '--cfg',
        dest='cfg_file',
        help='Config file for training (and optionally testing)',
        default=None,
        type=str)
    parser.add_argument(
        '--use_gpu',
        dest='use_gpu',
        help='Use gpu or cpu',
        action='store_true',
        default=False)
    parser.add_argument(
        '--use_mpio',
        dest='use_mpio',
        help='Use multiprocess I/O or not',
        action='store_true',
        default=False)
    parser.add_argument(
        '--log_steps',
        dest='log_steps',
        help='Display logging information at every log_steps',
        default=10,
        type=int)
    parser.add_argument(
        '--debug',
        dest='debug',
        help='debug mode, display detail information of training',
        action='store_true')
    parser.add_argument(
78 79 80
        '--use_vdl',
        dest='use_vdl',
        help='whether to record the data during training to VisualDL',
W
wuzewu 已提交
81 82
        action='store_true')
    parser.add_argument(
83 84 85
        '--vdl_log_dir',
        dest='vdl_log_dir',
        help='VisualDL logging directory',
W
wuzewu 已提交
86 87 88 89 90 91 92 93 94 95 96 97
        default=None,
        type=str)
    parser.add_argument(
        '--do_eval',
        dest='do_eval',
        help='Evaluation models result on every new checkpoint',
        action='store_true')
    parser.add_argument(
        'opts',
        help='See utils/config.py for all options',
        default=None,
        nargs=argparse.REMAINDER)
X
xiegegege 已提交
98 99 100 101 102 103
    parser.add_argument(
        '--enable_ce',
        dest='enable_ce',
        help='If set True, enable continuous evaluation job.'
        'This flag is only used for internal test.',
        action='store_true')
104

H
hysunflower 已提交
105 106 107 108 109 110 111 112 113 114
    # NOTE: This for benchmark
    parser.add_argument(
        '--is_profiler',
        help='the profiler switch.(used for benchmark)',
        default=0,
        type=int)
    parser.add_argument(
        '--profiler_path',
        help='the profiler output file path.(used for benchmark)',
        default='./seg.profiler',
115
        type=str)
W
wuzewu 已提交
116 117 118
    return parser.parse_args()


W
wuyefeilin 已提交
119
def save_checkpoint(program, ckpt_name):
W
wuzewu 已提交
120 121 122 123 124 125 126 127
    """
    Save checkpoint for evaluation or resume training
    """
    ckpt_dir = os.path.join(cfg.TRAIN.MODEL_SAVE_DIR, str(ckpt_name))
    print("Save model checkpoint to {}".format(ckpt_dir))
    if not os.path.isdir(ckpt_dir):
        os.makedirs(ckpt_dir)

W
wuyefeilin 已提交
128
    fluid.save(program, os.path.join(ckpt_dir, 'model'))
W
wuzewu 已提交
129 130 131 132 133 134

    return ckpt_dir


def load_checkpoint(exe, program):
    """
W
wuyefeilin 已提交
135
    Load checkpoiont for resuming training
W
wuzewu 已提交
136
    """
W
wuzewu 已提交
137
    model_path = cfg.TRAIN.RESUME_MODEL_DIR
W
wuyefeilin 已提交
138 139 140 141 142 143
    print('Resume model training from:', model_path)
    if not os.path.exists(model_path):
        raise ValueError(
            "TRAIN.PRETRAIN_MODEL {} not exist!".format(model_path))
    fluid.load(program, os.path.join(model_path, 'model'), exe)

W
wuzewu 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
    # Check is path ended by path spearator
    if model_path[-1] == os.sep:
        model_path = model_path[0:-1]
    epoch_name = os.path.basename(model_path)
    # If resume model is final model
    if epoch_name == 'final':
        begin_epoch = cfg.SOLVER.NUM_EPOCHS
    # If resume model path is end of digit, restore epoch status
    elif epoch_name.isdigit():
        epoch = int(epoch_name)
        begin_epoch = epoch + 1
    else:
        raise ValueError("Resume model path is not valid!")
    print("Model checkpoint loaded successfully!")
    return begin_epoch


W
wuyefeilin 已提交
161 162 163 164 165 166 167
def update_best_model(ckpt_dir):
    best_model_dir = os.path.join(cfg.TRAIN.MODEL_SAVE_DIR, 'best_model')
    if os.path.exists(best_model_dir):
        shutil.rmtree(best_model_dir)
    shutil.copytree(ckpt_dir, best_model_dir)


168 169 170
def print_info(*msg):
    if cfg.TRAINER_ID == 0:
        print(*msg)
W
wuzewu 已提交
171

W
wuzewu 已提交
172

W
wuzewu 已提交
173 174 175
def train(cfg):
    startup_prog = fluid.Program()
    train_prog = fluid.Program()
X
xiegegege 已提交
176 177 178
    if args.enable_ce:
        startup_prog.random_seed = 1000
        train_prog.random_seed = 1000
W
wuzewu 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
    drop_last = True

    dataset = SegDataset(
        file_list=cfg.DATASET.TRAIN_FILE_LIST,
        mode=ModelPhase.TRAIN,
        shuffle=True,
        data_dir=cfg.DATASET.DATA_DIR)

    def data_generator():
        if args.use_mpio:
            data_gen = dataset.multiprocess_generator(
                num_processes=cfg.DATALOADER.NUM_WORKERS,
                max_queue_size=cfg.DATALOADER.BUF_SIZE)
        else:
            data_gen = dataset.generator()

        batch_data = []
        for b in data_gen:
            batch_data.append(b)
198
            if len(batch_data) == (cfg.BATCH_SIZE // cfg.NUM_TRAINERS):
W
wuzewu 已提交
199 200 201 202 203 204 205 206 207 208
                for item in batch_data:
                    yield item[0], item[1], item[2]
                batch_data = []
        # If use sync batch norm strategy, drop last batch if number of samples
        # in batch_data is less then cfg.BATCH_SIZE to avoid NCCL hang issues
        if not cfg.TRAIN.SYNC_BATCH_NORM:
            for item in batch_data:
                yield item[0], item[1], item[2]

    # Get device environment
209 210
    gpu_id = int(os.environ.get('FLAGS_selected_gpus', 0))
    place = fluid.CUDAPlace(gpu_id) if args.use_gpu else fluid.CPUPlace()
W
wuzewu 已提交
211
    places = fluid.cuda_places() if args.use_gpu else fluid.cpu_places()
212

W
wuzewu 已提交
213
    # Get number of GPU
214 215
    dev_count = cfg.NUM_TRAINERS if cfg.NUM_TRAINERS > 1 else len(places)
    print_info("#Device count: {}".format(dev_count))
W
wuzewu 已提交
216 217 218 219 220 221 222

    # Make sure BATCH_SIZE can divided by GPU cards
    assert cfg.BATCH_SIZE % dev_count == 0, (
        'BATCH_SIZE:{} not divisble by number of GPUs:{}'.format(
            cfg.BATCH_SIZE, dev_count))
    # If use multi-gpu training mode, batch data will allocated to each GPU evenly
    batch_size_per_dev = cfg.BATCH_SIZE // dev_count
223
    print_info("batch_size_per_dev: {}".format(batch_size_per_dev))
W
wuzewu 已提交
224

225
    data_loader, avg_loss, lr, pred, grts, masks = build_model(
W
wuzewu 已提交
226
        train_prog, startup_prog, phase=ModelPhase.TRAIN)
227
    data_loader.set_sample_generator(
W
wuzewu 已提交
228 229 230 231 232 233 234 235 236 237 238
        data_generator, batch_size=batch_size_per_dev, drop_last=drop_last)

    exe = fluid.Executor(place)
    exe.run(startup_prog)

    exec_strategy = fluid.ExecutionStrategy()
    # Clear temporary variables every 100 iteration
    if args.use_gpu:
        exec_strategy.num_threads = fluid.core.get_cuda_device_count()
    exec_strategy.num_iteration_per_drop_scope = 100
    build_strategy = fluid.BuildStrategy()
239 240 241 242 243

    if cfg.NUM_TRAINERS > 1 and args.use_gpu:
        dist_utils.prepare_for_multi_process(exe, build_strategy, train_prog)
        exec_strategy.num_threads = 1

W
wuzewu 已提交
244 245 246
    if cfg.TRAIN.SYNC_BATCH_NORM and args.use_gpu:
        if dev_count > 1:
            # Apply sync batch norm strategy
247
            print_info("Sync BatchNorm strategy is effective.")
W
wuzewu 已提交
248 249
            build_strategy.sync_batch_norm = True
        else:
W
wuzewu 已提交
250 251 252
            print_info(
                "Sync BatchNorm strategy will not be effective if GPU device"
                " count <= 1")
W
wuzewu 已提交
253 254 255 256 257 258 259
    compiled_train_prog = fluid.CompiledProgram(train_prog).with_data_parallel(
        loss_name=avg_loss.name,
        exec_strategy=exec_strategy,
        build_strategy=build_strategy)

    # Resume training
    begin_epoch = cfg.SOLVER.BEGIN_EPOCH
W
wuzewu 已提交
260
    if cfg.TRAIN.RESUME_MODEL_DIR:
W
wuzewu 已提交
261 262
        begin_epoch = load_checkpoint(exe, train_prog)
    # Load pretrained model
W
wuzewu 已提交
263
    elif os.path.exists(cfg.TRAIN.PRETRAINED_MODEL_DIR):
W
wuyefeilin 已提交
264
        load_pretrained_weights(exe, train_prog, cfg.TRAIN.PRETRAINED_MODEL_DIR)
W
wuzewu 已提交
265
    else:
W
wuzewu 已提交
266 267 268
        print_info(
            'Pretrained model dir {} not exists, training from scratch...'.
            format(cfg.TRAIN.PRETRAINED_MODEL_DIR))
W
wuzewu 已提交
269 270 271 272 273 274 275 276 277 278

    fetch_list = [avg_loss.name, lr.name]
    if args.debug:
        # Fetch more variable info and use streaming confusion matrix to
        # calculate IoU results if in debug mode
        np.set_printoptions(
            precision=4, suppress=True, linewidth=160, floatmode="fixed")
        fetch_list.extend([pred.name, grts.name, masks.name])
        cm = ConfusionMatrix(cfg.DATASET.NUM_CLASSES, streaming=True)

279 280 281
    if args.use_vdl:
        if not args.vdl_log_dir:
            print_info("Please specify the log directory by --vdl_log_dir.")
W
wuzewu 已提交
282 283
            exit(1)

284 285
        from visualdl import LogWriter
        log_writer = LogWriter(args.vdl_log_dir)
W
wuzewu 已提交
286

287 288
    # trainer_id = int(os.getenv("PADDLE_TRAINER_ID", 0))
    # num_trainers = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))
289
    step = 0
W
wuzewu 已提交
290 291 292 293 294 295
    all_step = cfg.DATASET.TRAIN_TOTAL_IMAGES // cfg.BATCH_SIZE
    if cfg.DATASET.TRAIN_TOTAL_IMAGES % cfg.BATCH_SIZE and drop_last != True:
        all_step += 1
    all_step *= (cfg.SOLVER.NUM_EPOCHS - begin_epoch + 1)

    avg_loss = 0.0
W
wuyefeilin 已提交
296 297
    best_mIoU = 0.0

W
wuzewu 已提交
298 299 300 301 302 303 304
    timer = Timer()
    timer.start()
    if begin_epoch > cfg.SOLVER.NUM_EPOCHS:
        raise ValueError(
            ("begin epoch[{}] is larger than cfg.SOLVER.NUM_EPOCHS[{}]").format(
                begin_epoch, cfg.SOLVER.NUM_EPOCHS))

W
wuzewu 已提交
305
    if args.use_mpio:
306
        print_info("Use multiprocess reader")
W
wuzewu 已提交
307
    else:
308
        print_info("Use multi-thread reader")
W
wuzewu 已提交
309

W
wuzewu 已提交
310
    for epoch in range(begin_epoch, cfg.SOLVER.NUM_EPOCHS + 1):
311
        data_loader.start()
W
wuzewu 已提交
312 313 314 315 316 317 318 319 320 321 322
        while True:
            try:
                if args.debug:
                    # Print category IoU and accuracy to check whether the
                    # traning process is corresponed to expectation
                    loss, lr, pred, grts, masks = exe.run(
                        program=compiled_train_prog,
                        fetch_list=fetch_list,
                        return_numpy=True)
                    cm.calculate(pred, grts, masks)
                    avg_loss += np.mean(np.array(loss))
323
                    step += 1
W
wuzewu 已提交
324

325
                    if step % args.log_steps == 0:
W
wuzewu 已提交
326 327 328 329 330
                        speed = args.log_steps / timer.elapsed_time()
                        avg_loss /= args.log_steps
                        category_acc, mean_acc = cm.accuracy()
                        category_iou, mean_iou = cm.mean_iou()

331
                        print_info((
W
wuzewu 已提交
332
                            "epoch={} step={} lr={:.5f} loss={:.4f} acc={:.5f} mIoU={:.5f} step/sec={:.3f} | ETA {}"
333
                        ).format(epoch, step, lr[0], avg_loss, mean_acc,
W
wuzewu 已提交
334
                                 mean_iou, speed,
335
                                 calculate_eta(all_step - step, speed)))
336 337
                        print_info("Category IoU: ", category_iou)
                        print_info("Category Acc: ", category_acc)
338
                        if args.use_vdl:
W
wuzewu 已提交
339
                            log_writer.add_scalar('Train/mean_iou', mean_iou,
340
                                                  step)
W
wuzewu 已提交
341
                            log_writer.add_scalar('Train/mean_acc', mean_acc,
342
                                                  step)
W
wuyefeilin 已提交
343 344 345
                            log_writer.add_scalar('Train/loss', avg_loss, step)
                            log_writer.add_scalar('Train/lr', lr[0], step)
                            log_writer.add_scalar('Train/step/sec', speed, step)
W
wuzewu 已提交
346 347 348 349 350 351 352 353 354 355 356
                        sys.stdout.flush()
                        avg_loss = 0.0
                        cm.zero_matrix()
                        timer.restart()
                else:
                    # If not in debug mode, avoid unnessary log and calculate
                    loss, lr = exe.run(
                        program=compiled_train_prog,
                        fetch_list=fetch_list,
                        return_numpy=True)
                    avg_loss += np.mean(np.array(loss))
357
                    step += 1
W
wuzewu 已提交
358

359
                    if step % args.log_steps == 0 and cfg.TRAINER_ID == 0:
W
wuzewu 已提交
360 361 362 363
                        avg_loss /= args.log_steps
                        speed = args.log_steps / timer.elapsed_time()
                        print((
                            "epoch={} step={} lr={:.5f} loss={:.4f} step/sec={:.3f} | ETA {}"
364 365 366
                        ).format(epoch, step, lr[0], avg_loss, speed,
                                 calculate_eta(all_step - step, speed)))
                        if args.use_vdl:
W
wuyefeilin 已提交
367 368 369
                            log_writer.add_scalar('Train/loss', avg_loss, step)
                            log_writer.add_scalar('Train/lr', lr[0], step)
                            log_writer.add_scalar('Train/speed', speed, step)
W
wuzewu 已提交
370 371 372
                        sys.stdout.flush()
                        avg_loss = 0.0
                        timer.restart()
373

H
hysunflower 已提交
374
                    # NOTE : used for benchmark, profiler tools
375
                    if args.is_profiler and epoch == 1 and step == args.log_steps:
H
hysunflower 已提交
376
                        profiler.start_profiler("All")
377
                    elif args.is_profiler and epoch == 1 and step == args.log_steps + 5:
H
hysunflower 已提交
378 379
                        profiler.stop_profiler("total", args.profiler_path)
                        return
W
wuzewu 已提交
380 381

            except fluid.core.EOFException:
382
                data_loader.reset()
W
wuzewu 已提交
383 384 385 386
                break
            except Exception as e:
                print(e)

W
wuyefeilin 已提交
387 388
        if (epoch % cfg.TRAIN.SNAPSHOT_EPOCH == 0
                or epoch == cfg.SOLVER.NUM_EPOCHS) and cfg.TRAINER_ID == 0:
W
wuyefeilin 已提交
389
            ckpt_dir = save_checkpoint(train_prog, epoch)
W
wuzewu 已提交
390 391 392 393 394 395 396 397

            if args.do_eval:
                print("Evaluation start")
                _, mean_iou, _, mean_acc = evaluate(
                    cfg=cfg,
                    ckpt_dir=ckpt_dir,
                    use_gpu=args.use_gpu,
                    use_mpio=args.use_mpio)
398
                if args.use_vdl:
W
wuyefeilin 已提交
399 400
                    log_writer.add_scalar('Evaluate/mean_iou', mean_iou, step)
                    log_writer.add_scalar('Evaluate/mean_acc', mean_acc, step)
W
wuzewu 已提交
401

W
wuyefeilin 已提交
402 403 404 405 406 407 408 409
                if mean_iou > best_mIoU:
                    best_mIoU = mean_iou
                    update_best_model(ckpt_dir)
                    print_info("Save best model {} to {}, mIoU = {:.4f}".format(
                        ckpt_dir,
                        os.path.join(cfg.TRAIN.MODEL_SAVE_DIR, 'best_model'),
                        mean_iou))

410 411
            # Use VisualDL to visualize results
            if args.use_vdl and cfg.DATASET.VIS_FILE_LIST is not None:
W
wuzewu 已提交
412 413 414 415 416 417 418 419 420
                visualize(
                    cfg=cfg,
                    use_gpu=args.use_gpu,
                    vis_file_list=cfg.DATASET.VIS_FILE_LIST,
                    vis_dir="visual",
                    ckpt_dir=ckpt_dir,
                    log_writer=log_writer)

    # save final model
421
    if cfg.TRAINER_ID == 0:
W
wuyefeilin 已提交
422
        save_checkpoint(train_prog, 'final')
W
wuzewu 已提交
423 424 425 426 427


def main(args):
    if args.cfg_file is not None:
        cfg.update_from_file(args.cfg_file)
428
    if args.opts:
W
wuzewu 已提交
429
        cfg.update_from_list(args.opts)
X
xiegegege 已提交
430 431 432
    if args.enable_ce:
        random.seed(0)
        np.random.seed(0)
433 434 435 436

    cfg.TRAINER_ID = int(os.getenv("PADDLE_TRAINER_ID", 0))
    cfg.NUM_TRAINERS = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))

W
wuzewu 已提交
437
    cfg.check_and_infer()
438
    print_info(pprint.pformat(cfg))
W
wuzewu 已提交
439 440 441 442 443 444 445 446 447 448 449 450 451 452
    train(cfg)


if __name__ == '__main__':
    args = parse_args()
    if fluid.core.is_compiled_with_cuda() != True and args.use_gpu == True:
        print(
            "You can not set use_gpu = True in the model because you are using paddlepaddle-cpu."
        )
        print(
            "Please: 1. Install paddlepaddle-gpu to run your models on GPU or 2. Set use_gpu=False to run models on CPU."
        )
        sys.exit(1)
    main(args)